By the Numbers: Towards Standard Evaluation Metrics for Programmable Logic Controllers' Defenses

Efrén López-Morales, Jacob Hopkins, Alvaro Cardenas, Ali Abbasi, and Carlos Rubio-Medrano

2nd International Workshop on Re-design Industrial Control Systems with Security (RICSS)

October 14th, 2024

A newly developed PLC malware does not require physical access to target an ICS environment, is mostly platform neutral, and is more resilient than traditional malware aimed at critical infrastructure.

'Crash Override': The Malware That Took Down a Power Grid

In Ukraine, researchers have found the first real-world malware that attacks physical infrastructure since Stuxnet.

A newly developed PLC malware does not require physical access to target an ICS environment, is mostly platform neutral, and is more resilient than traditional malware aimed at critical infrastructure.

'Crash Override': The Malware That Took Down a Power Grid

In Ukraine, researchers have found the first real-world malware that attacks physical infrastructure since Stuxnet.

Feds Uncover a 'Swiss Army Knife' for Hacking Industrial Control Systems

The malware toolkit, known as Pipedream, is perhaps the most versatile tool ever made to target critical infrastructure like power grids and oil refineries.

Background

• Control physical industrial equipment, e.g., pumps.

- Control physical industrial equipment, e.g., pumps.
- Varied software and hardware architectures.

- Control physical industrial equipment, e.g., pumps.
- Varied software and hardware architectures.
- Increasingly interconnected, e.g., cloud.

- Control physical industrial equipment, e.g., pumps.
- Varied software and hardware architectures.
- Increasingly interconnected, e.g., cloud.
- Yet, little to no built-in security features.

Defense Methods per Mitigation Category

PLC Security Papers' Artifact Availability

PLC Security Papers' Artifact Availability

PLC Security Papers' Artifact Availability

Is there an **alternative** to research artifacts to **improve** PLC security research **reproducibility**?

 Provide the standards by which different algorithms, systems, or artifacts are compared.

- Provide the standards by which different algorithms, systems, or artifacts are compared.
- Provide **quantitative** measures to assess the **performance** of the artifact.

- Provide the standards by which different algorithms, systems, or artifacts are compared.
- Provide **quantitative** measures to assess the **performance** of the artifact.
- Do not require access to artifacts.

Existing Evaluation Metrics for PLCs

Overhead

Existing Evaluation Metrics for PLCs

Overhead

Effectiveness

Existing Evaluation Metrics for PLCs

No security metrics

Main Problem:

Metrics are not being reported and are not standardized

Our contribution:

Set of Standard Evaluation Metrics for PLC Defenses

Research Questions

1. What are the key evaluation metrics for PLC Defenses?

Research Questions

1. What are the key evaluation metrics for PLC Defenses?

2. What are the challenges in obtaining these evaluation metrics?

Research Questions

1. What are the key evaluation metrics for PLC Defenses?

2. What are the challenges in obtaining these evaluation metrics?

3. How can these challenges be addressed?

How did we select our standard metrics?

Multiple PLC Architectures

How did we select our standard metrics?

Multiple PLC Architectures Multiple PLC Defenses

How did we select our standard metrics?

Multiple PLC Architectures

Multiple PLC Defenses

Straightforward

Our Standard Evaluation Metrics

Overhead

Our Standard Evaluation Metrics

Overhead

Our Standard Evaluation Metrics

Our Standard Evaluation Metrics: Overhead

Metric	Unit
Scan Cycle	milliseconds (ms)
Total Runtime Cycles	milliseconds (ms)
CPU Cycles	milliseconds (ms)
Total RAM Usage	Kilobytes (KiB)

Our Standard Evaluation Metrics: Security

Metric	Unit
ROP Gadgets	Integer
Memory Region Ratio (MRR)	Kilobytes (KiB)
Privileged Cycles	milliseconds (ms)

Our Standard Evaluation Metrics: Effectiveness

Metric	Unit
True Positive	Integer
True Negative	Integer
False Positive	Integer
False Negative	Integer
Accuracy	Float

What are the challenges obtaining our evaluation metrics?

No standard benchmarking tool

SHL	R8, R0, 0x1	
	[R15], R8 [R15 + 0x8] R12	Trampoline
-		L1:// 1. Call save state JCAL save_thread_state // 2. Pass argument
- SHL	HL R8, R0, 0x1	MOV32I R4, arg // 3. Call instrumentation JCAL "foo" // 4. Call restore state
LDG	[R15 + 0x8], R12	// 5. Relocated original instr. STS [R15], R8 // 6. Jump back JMP NPC

What are the challenges obtaining our evaluation metrics?

No standard benchmarking tool

Proprietary Software and Hardware

SIEMENS

Rockwell Automation

What are the challenges obtaining our evaluation metrics?

No standard benchmarking tool

Proprietary Software and Hardware

Different Environmental Conditions

SIEMENS

Rockwell Automation

Recommendation 1: Leverage existing tools

Benchmarking

Recommendation 1: Leverage existing tools

Benchmarking

Profiling

arm Developer

OPENPLC <> TO A MORE

OPEN FUTURE

SIMATIC Controller Profiling

TIA Portal

CODESYS Profiler

The CODESYS Profiler enables level The CODESYS Profiler is part of

Aktuelle Version: 2200 Article no.: 2101000004

Recommendation 2: Normalize Environment Configuration

Track configuration

Recommendation 2: Normalize Environment Configuration

Track configuration

Report in paper

Recommendation 3: Worst-Case Execution Time (WCET)

Recommendation 3: Worst-Case Execution Time (WCET)

WCET over Average

• Develop a PLC defenses **benchmark framework**.

- Develop a PLC defenses **benchmark framework**.
 - How to **automate** it?

- Develop a PLC defenses **benchmark framework**.
 - How to **automate** it?
 - How many **sub-benchmarks** will such a framework require?

- Develop a PLC defenses **benchmark framework**.
 - How to **automate** it?
 - How many **sub-benchmarks** will such a framework require?
 - What **PLCs** will be **supported**?

• We provided evidence to show that current evaluation metrics are lacking.

- We provided evidence to show that **current evaluation metrics** are lacking.
- We proposed a set of standard evaluation metrics.

- We provided evidence to show that **current evaluation metrics are lacking.**
- We proposed a set of standard evaluation metrics.
- We **provided recommendations** on how to measure and report these metrics.

- We provided evidence to show that **current evaluation metrics are lacking.**
- We proposed a set of standard evaluation metrics.
- We **provided recommendations** on how to measure and report these metrics.
- We hope this work will **serve as a starting point** to improve the current state of evaluation metrics for PLC security.

Thank you!

Efrén López-Morales

efrenlopez.org @efren_lopezm

