
HoneyPLC: A Next-Generation
Honeypot for Industrial Control Systems

Efrén López Morales, Carlos E. Rubio-Medrano, Adam Doupé, Ruoyu Wang,
Yan Shoshitaishvili, Tiffany Bao, and Gail-Joon Ahn

1 Introduction

Industrial Control Systems (ICSs) are widely used by many industries including
public utilities such as the power grid, water, and telecommunications [48]. These
utilities are integral to people’s daily life, and any interruption to them may
cause significant damage and losses. The increasingly interconnected nature of
modern ICS makes them more vulnerable than ever to cyberattacks. For example,
a cyberattack that targets a power grid would potentially lead to blackouts in a
city or across an entire geographical region. Regrettably, this proposition is no
longer a fiction. The number of attacks targeting ICS has been steadily increasing
since the infamous Stuxnet malware first showed the world that ICS networks are
not secure [14]. Also, in 2015, a cyberattack targeting the Ukrainian power grid
successfully took down several of its distribution stations. The ensuing outages left
approximately 225,000 people without access to electricity for several hours [7].
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1.1 The Problem: Preventing Attacks Targeting ICS via PLCs

One of the key components of ICS networks is Programmable Logic Controllers,
better known as PLCs [48]. PLCs are commonly found in supervisory control and
data acquisition or SCADA systems. These systems are used to control separated
assets that require centralized data acquisition which are a type of ICS [48]. Figure 1
illustrates these relationships. PLCs control mission-critical electrical hardware
such as pumps or centrifuges, effectively serving as a bridge between the cyber and
the physical worlds. Because of their critical role, PLCs have been recently targeted
by cyberattacks, which attempt to disrupt their proper functioning in an effort to
affect their corresponding ICS as a whole. As an example, PLCs were the primary
target of the Stuxnet malware as they controlled critical physical processes in a
nuclear facility. To better understand cyberattacks against ICS and PLCs, several
honeypots have been proposed [5, 15, 16, 24, 39, 51]. However, current honeypot
implementations for ICS fail to provide the necessary features to capture data for
most recent and sophisticated attack techniques. For example, a common limitation
exhibited by most of the existing approaches is their low-interaction nature: they
usually rely on basic and shallow simulations of network protocols, which usually
lack complex functionality that limits the attack vectors and makes them easy to
discover by attackers. These shortcomings heavily restrict the value of the attack
data that can be gathered by these ICS honeypots.

1.2 Challenges for Solving the Problem

Providing a solution to these issues comes with a set of unique challenges. First, it is
difficult to achieve meaningful, step-by-step protocol simulation that can eventually

Fig. 1 The relationship
between ICS, SCADA, and
PLCs, as well as Distributed
Control Systems (DCSs) [23],
Operational Technology
(OT) [13], and
Cyber-Physical Systems
(CPSs) [44] SCADA

ICS

DCS

PLCOTCPS
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result in high-level, deceiving interactions between honeypots and attackers. These
inadequate simulations complicate concealing the true nature of honeypots up to
the point accurate and valuable data, e.g., the actual malicious ladder logic code
itself can be retrieved from attackers for further analysis. Second, several network
protocols largely used in ICS, e.g., S7comm [51], are proprietary, in the sense that
no detailed documentation on them is publicly available, which prevents an effective
understanding of the protocol, including hidden configuration parameters as well as
implicit, undocumented assumptions, which can ultimately reveal the true nature of
a honeypot to an attacker. Moreover, existing PLCs used in practice vary in terms
of configuration settings, supported protocols, and the way they are customized for
different application domains. Creating a general framework that can effectively
support such heterogeneity of PLCs devices, regardless of their brand and model,
without requiring the edition of large and clumsy configuration files, represents a
non-trivial challenge.

1.3 Proposed Approach: A Next-Generation Honeypot for ICS

To alleviate the aforementioned concerns targeting ICS worldwide and effectively
tackle the research challenges just discussed, this chapter presents HoneyPLC:
a high-interaction, extensible, and malware-collecting honeypot modeling PLCs,
which is specifically crafted for ICS. HoneyPLC includes advanced simulations of
the most common network protocols found in PLCs, namely, the TCP/IP Stack,
S7comm, HTTP, and SNMP, addressing the challenges introduced by inadequate
simulations and protocol closeness as discussed before. As an example, our
TCP/IP Stack simulation benefits from the introduction of a novel technique called
fingerprint reversing, which allows for accurately modeling TCP, ICMP, and UDP
probes at runtime, providing an effective, customized response to each interaction as
initiated by an attacker, largely increasing the level of engagement and subsequent
deception. In addition, our simulation of the S7comm protocol, which is core to
PLC communications, provides a level of simulation that is able to trick even
proprietary tools such as the Siemens Step7 Manager [4]. Moreover, HoneyPLC
also provides enhanced extensibility features, allowing for PLCs of different models
and manufacturing brands to be effectively simulated, thus addressing the PLC
heterogeneity challenge just discussed. We have successfully tested this feature
using five real PLCs, allowing for HoneyPLC to currently support out of the box
the Siemens S7-300, S7-1200, and S7-1500, the Allen-Bradley MicroLogix 1100,
and the ABB PM554-TP-ETH PLCs. HoneyPLC also implements an advanced
simulation of the internal memory blocks featured by modern PLCs, allowing for
the automated capture and storage of malicious ladder logic programs, which can
be later analyzed to reveal new attacking techniques.

The features just discussed are, to the best of our knowledge, exclusive to
HoneyPLC and also significantly advance the state of the art for ICS honeypots.
This positions HoneyPLC as a convenient and flexible tool that can serve as a
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reliable basis for the analysis and understanding of emerging threats and attacks,
as well as the subsequent development of protection techniques for ICS.

1.4 Contributions to Scientific Literature

Overall, this chapter makes the following contributions:

1. It provides a summary of the limitations and shortcomings of existing ICS
Honeypots and discusses how they address (or not) emerging malware threats, as
well as new ICS technology, e.g., new PLC models and ICS network protocols.

2. It presents HoneyPLC, a high-interaction honeypot for PLCs, which not only
solves many of the limitations of related approaches but also provides convenient
support for further understanding and eventually defeating emerging threats for
ICS.

3. It introduces the HoneyPLC PLC Profiler Tool, which allows for the effective
simulation of many different PLCs regardless of their model and manufacturer.

4. Finally, experimental evidence is provided showing that HoneyPLC is not only
effective at engaging and deceiving state-of-the-art tools for network recon-
naissance but also outperforms existing honeypots in the literature, achieving
a performance level comparable to real PLC devices.

1.5 Source Code Availability and Chapter Roadmap

In an effort to further open and produce reproducible science, HoneyPLC and all our
experimental results are available online.1 This chapter is an extended version of a
paper that appeared at the Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (ACM CCS’20) [25], and it is organized
as follows: Sect. 2 introduces detailed information about PLCs, honeypots, ICS-
specific malware, as well as similar approaches found in the literature. Section 3
elaborates on the lack of support of such existing approaches for handling emerging
threats for ICS, resulting in a problem that is then addressed in Sect. 4. Later, Sect. 5
presents experimental evidence of the suitability of HoneyPLC for being deployed
in practice by precisely describing testing environments, procedures, and results.
Subsequently, Sect. 6 delves into a discussion about how our approach ranks up
against current literature and outlines what future research could be undertaken as a
result of this work. Finally, Sect. 7 concludes this chapter.

1 https://github.com/sefcom/honeyplc.

https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
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2 Background and Related Work

Before diving into the details of HoneyPLC, we present some background on the
tools and technologies that are addressed in further sections, namely, PLCs them-
selves, network reconnaissance tools, malware specifically tailored for disrupting
ICS, and honeypots that have been developed for protecting ICS environments.

2.1 Programmable Logic Controllers

A Programmable Logic Controller (PLC) is a small industrial computer designed
to perform logic functions based on input provided by electrical hardware such as
pumps, relays, mechanical timers, switches, etc. PLCs have the capability of con-
trolling complex industrial processes, making them ubiquitous in ICS and SCADA
environments [47]. Some popular PLC manufacturers include Siemens [45], Allen-
Bradley [2], and ABB [1]. Internally, PLCs have programmable memory blocks that
store instructions to implement different functions, for example, input and output
control, counting, logic gates, and arithmetic calculations.

2.2 Network Reconnaissance Tools

In practice, the process of network reconnaissance involves identifying the topology
of a network, the protocols used, the different devices that may be connected through
it, etc. Since such a process is essential for carrying out successful attacks to ICS
and PLCs, we now present a set of tools for network reconnaissance that are widely
used in practice, which were used to evaluate HoneyPLC as it is discussed in Sects. 3
and 5.

2.2.1 Nmap

Nmap or “Network Mapper” [26] is a popular open-source utility that is able to
detect the operating system and services that a particular device is running by
sending raw IP packets over the network. Once a given detection scan is completed,
Nmap can either report a single OS match or a list of potential OS guesses, each
guess with its own confidence percentage rate, in the range of 0 to 100, where 0
denotes the complete absence of confidence and 100 denotes a complete confidence
on the projected guess result.



150 E. L. Morales et al.

2.2.2 PLCScan

PLCScan [43] is a reconnaissance tool used to scan PLC devices in a given network.
PLCScan reveals PLCs that implement the S7comm protocol over TCP port 102 or
the Modbus protocol over TCP port 502. It is written as a command line Python
script and lists PLC information including basic hardware, serial number, name of
the PLC, and firmware version.

2.2.3 Shodan

Shodan is a search engine and crawler [27] specifically tailored for devices exposed
across the Internet, e.g., webcams, routers, and ICS devices, among others. The
Shodan Honeyscore (part of the Shodan API [27]) is a tool that checks whether a
device is a honeypot or not. Given an IP address, the Shodan Honeyscore calculates
the probability that the host is a honeypot, in a range between 0.0 and 1.0, where
0.0 means that the host is definitively a real system and 1.0 means the host is
definitively a honeypot. According to Shodan’s creator, the following criteria are
used for calculating Honeyscores [28]: (1) too many open network ports, (2) a
service not matching the environment, for example, an ICS device running on AWS
EC2, (3) known default settings of known honeypots, (4) if a host was initially
classified as a honeypot, then it is highly likely that it remains a honeypot today,
even though its configuration may look real, (5) a Machine Learning classification
algorithm (not disclosed), and, finally, (6) the same configuration being used across
multiple honeypots.

2.3 Exemplary ICS Malware

Recently, a series of dedicated malware instances have attempted to disrupt the
functioning of ICS environments, and some of them have been successful and have
ultimately resulted in costly damages. With that in mind, we now present a summary
of the malware that is most relevant to the problem addressed by our proposed
HoneyPLC approach.

2.3.1 Stuxnet

The first ever-documented cyber-warfare weapon, Stuxnet, was a turning point in
the history of cybersecurity [12], targeting PLC models 315 and 417 made by
Siemens to modify their inner ladder logic code while concealing itself from ICS
administrators [21]. The malware would first spread itself via USB sticks and
the local network, looking for vulnerable Windows workstations. Later, it would
proceed to infect the Step7 and WinCC Siemens proprietary software by hijacking
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a Dynamic Link Library (DLL) file used to communicate with the PLCs. Finally,
the malicious ladder logic payload would be dropped only on the aforementioned
models based on specific manufacturer numbers and memory blocks.

2.3.2 Pipedream Toolkit

Pipedream is the seventh documented malware that specifically targets ICS [11]. It
is not a single-purpose malware but a modular framework that includes multiple
exploits that target different ICS devices. These devices include Open Platform
Communications Unified Architecture (OPC UA) servers, Schneider Electric PLCs,
and OMRON PLCs. Pipedream is believed to have been developed by a nation state
or a state-sponsored group and was classified as an advanced persistent threat or
APT by the Department of Energy or DOE [8].

2.3.3 Dragonfly

Also known as Havex malware [37], Dragonfly was a large-scale cyberespionage
campaign that targeted ICS software in the energy sector in the United States and
Europe. In order to infect its targets, three different attack vectors were used. First,
a spam campaign that used spear phishing targeted senior employees in energy
companies. Second, Watering Hole attacks [37] that compromised legitimate energy
sector websites were deployed to redirect the target to another compromised website
that hosted the Lightsout exploit, which ultimately dropped the Oldrea or Karagany
malwares [10] in the target’s host. The third and final attack vector used was a
dedicated trojanized software (legitimate software that is turned into malware),
the attackers leveraged to successfully compromise various legitimate ICS software
packages, ultimately inserted their own malicious code. Once a host was infected,
the Havex malware leveraged legitimate functionality available through the OPC
protocol to draw a map of the industrial devices present in the ICS network. This
kind of data would be highly valuable when designing future attacks. Dragonfly was
entirely focused on spying and gathering information on ICS networks.

2.3.4 Crashoverride

Otherwise known as Industroyer [46], CRASHOVERRIDE is a sophisticated
malware designed to disrupt ICS networks used in electrical substations. It shows in-
depth knowledge of ICS protocols used in the electrical industry that would only be
possible with access to specialized industrial equipment. CRASHOVERRIDE dealt
with physical damage by opening circuit breakers and keeping them open even if
the grid operators tried to close them back to restore the system. It is believed to
have been the cause of the power outage in Ukraine in December of 2016 [14].
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2.4 Honeypots for ICS

Honeypots are computer systems that purposefully expose a set of vulnerabilities
and services that can be probed, analyzed, and ultimately exploited by an attacker
[33], allowing for all possible interaction data to be monitored, logged, and stored
for future analysis. A summary of existing ICS honeypots is shown in Table 1.

2.4.1 Low-Interaction Honeypots

Low-interaction honeypots offer the least amount of functionality to an attacker
[29, 33]. The services exposed by this kind of honeypot are usually implemented
using simple scripts and finite state machines. Because of their limited interaction,
attackers may not be able to complete their attack steps or may even realize that
their target is a fake system. On the other hand, low-interaction honeypots cannot be
fully compromised as they are not real systems, which greatly reduces maintenance
costs and time invested in configuration and deployment. Gaspot [50] is a low-
interaction honeypot written as a Python script that simulates a gas tank gauge.
It can be modified to change temperature, tank name, and volume. The SCADA
HoneyNet Project was the first honeypot implementation specifically built for ICS
[39, 49]. This project was aimed at developing a software framework capable of
simulating ICS devices like PLCs using Python scripts. Conpot [16] is also a low-
interaction ICS honeypot implementation that simulates a Siemens S7-200 PLC and
can be manually modified to simulate other PLCs by editing an XML file.

2.4.2 High-Interaction Honeypots

High-interaction honeypots lie on the other side of the spectrum, as they strive to
offer the same level of interaction as a real system [29]. CryPLH is a high-interaction
honeypot that simulates an S7-300 Siemens PLC [5] and includes HTTP, HTTPS,
S7comm, and SNMP services running on a Linux host that has been modified to
accept connections on specific ports. The S7comm protocol is simulated by showing
an incorrect password response and the TCP/IP Stack is simulated via the Linux
kernel. S7commTrace [51] provides a high-interaction simulation of the S7comm
protocol and supports the Siemens S7-300 PLC. Antonioli et al. [3] proposed a
high-interaction honeypot that leverages the MiniCPS framework to simulate the
Ethernet/IP protocol and a generic PLC. HoneyPhy [24] provides a novel physics-
aware model to simulate a generic analog thermostat and the DNP3 protocol.
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3 Limitations of Existing Honeypots

Despite the benefits of honeypots previously discussed, existing honeypots, shown
in Table 1, fail to provide the necessary features to capture data on sophisticated
attacks, thus exhibiting the following limitations:

L-1 Limited Extensibility. A common limitation in the current literature is the
narrow extensibility support for the many different PLC devices and network
services that are used in ICS in practice and have already been targeted by
recent attacks. As an example, Stuxnet and the Kemuri attack targeted differ-
ent kinds of PLCs, whereas CRASHOVERRIDE targeted different network
services, as was discussed in Sect. 2. Following Table 1, several approaches in
the literature provide limited extensibility capabilities, which mostly include
the manual edition of XML files to support additional PLCs. This process,
besides being tedious and time-consuming, may be highly error-prone and may
ultimately reveal the true nature of a honeypot to attackers if implemented
incorrectly. This is aggravated by the fact most of the approaches in the
literature support only one or two PLC models only. In contrast, HoneyPLC
currently provides out-of-the-box support for 5 PLCs of three major brands, as
detailed in Sect. 5.2.

L-2 Limited Interaction. Current approaches mostly provide limited functionality
when it comes to TCP/IP Stack simulations, as well as native ICS network
protocols, as described in Sect. 2. This is a serious limitation that stops current
approaches from extracting value from adversarial interactions and malware.
As an example, CRASHOVERRIDE leveraged advanced ICS protocol features
that are not supported by low-interaction honeypots. This would ultimately
result in the loss of highly valuable data. Even high-interaction honeypots fail
to provide advanced enough protocol simulations. For example, CryPLH [5]
implements the S7comm protocol using a Python script that only simulates
an incorrect password screen. HoneyPLC solves this limitation by providing
extended support for various networks protocols, as we will discuss in Sect. 4.3
and evaluate through experiments in Sects. 5.3–5.6.

L-3 Limited Covert Operation. The moment an attacker discovers the true nature
of a honeypot, it is game over, as the attacker might stop interacting with
it altogether and stop revealing her attack methods. Therefore, honeypots
should aim to fool widely used network reconnaissance tools, e.g., Nmap,
introduced in Sect. 2.2, to maintain their covert operation. In such regard,
the SCADA HoneyNet Project [39] is the only approach in the literature that
provides a convincing deception to attackers. Also, Linux Kernel simulations,
implemented by several approaches in the literature, e.g., CryPLH, fail to
deceive Nmap. Other work fails to attempt or even mention such a crucial
feature. To overcome this, HoneyPLC provides advanced network simulations
intended to deceive reconnaissance tools, as shown in Sect. 4.3.

L-4 No Malware Collection. The highly specialized nature of ICS devices calls for
better analysis, dissection, and understanding techniques specifically tailored
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for emerging malware trends. In such regard, honeypots are a great tool to
collect and analyze malware [34]. However, as shown in Table 1, there exist no
honeypots for ICS in the literature that can provide such functionality. To solve
this, HoneyPLC provides a novel feature to capture ladder logic, as described
in Sects. 4.4 and 5.7.

4 HoneyPLC: A Convenient High-Interaction Honeypot For
PLCs

Having described the limitations of existing approaches, we now present Honey-
PLC, an extensible, high-interaction, and malware-collecting honeypot for ICS.
HoneyPLC provides advanced protocol simulations, e.g., TCP/IP, S7comm, HTTP,
and SNMP, achieving an interaction level comparable to real PLCs, ultimately
introducing low-to-moderate levels of risk as well as low maintenance costs. We
start by providing an illustrative use case scenario, which exemplifies how the
different inner modules and components of HoneyPLC interact with an attacker
at runtime when an attempt to compromise a PLC is made. Later, we elaborate on
how HoneyPLC solves each of the limitations highlighted in Sect. 3.

4.1 Illustrative Use Case Scenario

For illustrative purposes, we present an example use case scenario featuring
HoneyPLC, which is based on the architectural design graphically shown in Fig. 2.
After this case scenario has been completed, HoneyPLC may have been able to
collect crucial information about the attack inside its logging infrastructure: (1) the
public IP address of the attacker, (2) the specific PLC memory blocks the attacker
was targeting and, best of all, the critical piece, and (3) the ladder logic program
he/she has injected. Later on, such a malware sample can be analyzed at the byte
level to get a better understanding of the malicious instructions that the attacker
wanted the PLC to execute. In Sect. 6, we elaborate on this idea as a part of our
future work.

4.1.1 Initial Setup

As it will be further discussed in Sect. 4.2, HoneyPLC can be extended to simulate
PLCs of different models, communication protocols, and/or manufacturer brands.
With that in mind, the very first step when using HoneyPLC includes choosing the
PLC Profile featuring the desired real-life PLC that will be exposed to attackers as
a honeypot. This process is shown in Fig. 2 (Step 1). PLC Profiles can be chosen



156 E. L. Morales et al.

Fig. 2 The architecture of HoneyPLC. Before deployment, a PLC profile is selected from a
repository (1). Later, at runtime, an attacker may initiate contact via a dedicated protocol, e.g.,
S7comm (2). Communications are then processed by the Personality Engine (3), later forwarded
to the S7comm server (5), and are eventually logged by the interaction data framework (6). Finally,
all code injected by the attacker is captured within the repository module (7)

from a dedicated repository included as a part of HoneyPLC. For the rest of this
case scenario, let us assume the S7-1200 model is selected.

4.1.2 Fingerprinting

Once HoneyPLC is deployed, an attacker may try to fingerprint it using a recon-
naissance tool such as Nmap or PLCScan (Fig. 2 (Step 2)). When initial contact is
established, all the TCP/IP requests will be handled by the HoneyPLC’s Personality
Engine, which in turn is based on features provided by the Honeyd [9] tool, as it will
be further discussed in Sect. 4.3 (Fig. 2 (Step 3)). Since the S7-1200 PLC model was
selected in the beginning, the Personality Engine will use the appropriate fingerprint
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contained within the PLC Profile to reply to communications started by Nmap. At
this point, Nmap may confirm to the attacker that she is dealing with a PLC and not
a honeypot, as we show in Sect. 5.

4.1.3 Reconnaissance

In a subsequent step, an attacker might try to initiate an S7comm connection to
check what PLC memory blocks are available. As mentioned in Sect. 2, such a
process is crucial when attempting to modify the inner ladder logic code of a PLC.
The connection is first handled by the HoneyPLC’s Network Services module and
later forwarded to a dedicated S7comm server (Fig. 2 (Step 4)). The S7comm server
then replies with the requested information, and the Integration Framework forwards
the replies to the attacker. In the meantime, the S7comm server is logging all the
interactions, including the attacker’s source IP address and memory block requests
made to the PLC.

4.1.4 Code Injection

At this point, when the attacker identifies a PLC memory block suitable for injec-
tion, he/she uses an S7comm application like PLCinject [41] to load ladder logic
code into the PLC, effectively overwriting any preexisting code and introducing
a custom-made malicious payload (Fig. 2 (Step 5)). As a result, the HoneyPLC’s
S7comm server will write the code into the dedicated HoneyPLC repository, which
is managed by the Interaction Data module (Fig. 2 (Steps 6 and 7)).

4.1.5 Confirmation and Farewell

Finally, the attacker has two options. First, he/she can continue interacting with
HoneyPLC, e.g., trying to download the MIB via the SNMP protocol to get more
information about the network configuration or any banner present. Second, she
might stop interacting altogether, at which point HoneyPLC’s work is over.

4.2 Supporting PLC Extensibility

As described in Sect. 3, existing approaches in the literature provide limited support
for the large variety of PLC models currently in the market, which limits their
suitability for being used in practice. To solve this issue, this section starts by
describing how different PLC models are supported by HoneyPLC by means of so-
called PLC Profiles and then moves on to describe how other models in the market
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can be supported by developing new PLC Profiles by means of the HoneyPLC PLC
Profiler Tool.

4.2.1 PLC Profiles

The PLC Profile Repository, shown in Fig. 2 (Step 1), is a collection of PLC Profiles
that hold all the required data to simulate a given PLC. It communicates with the
Integration Framework and Network Services modules to customize the PLC that
HoneyPLC is simulating at any given time and addresses the lack of extensibility
discussed in Limitation L-1. In turn, a PLC Profile is a collection of three discrete
datasets, which allow HoneyPLC to simulate a particular PLC device by means of
highly customized simulations of network interactions, as it will be discussed in
Sect. 4.3.

• SNMP MIB. A Management Information Base (MIB) is a standard used by
SNMP agents. Because most PLC devices implement a simple SNMP agent, a
custom MIB is needed for HoneyPLC to provide a realistic SNMP simulation.

• Nmap Fingerprint. A plain text file with the Nmap fingerprint to effectively
simulate the TCP/IP Stack of a particular PLC device. As it will be detailed
later in this section, this fingerprint allows HoneyPLC to effectively engage and
deceive well-known reconnaissance tools such as Nmap.

• Management Website. Some PLC devices provide a light webserver with a splash
screen and some configuration options. Because of this, a PLC Profile includes a
copy of such website, including, but not limited to, image, HTML, and CSS files.

4.2.2 PLC Profiler Tool

The HoneyPLC Profiler Tool automates the creation of new HoneyPLC Profiles. It
interfaces with three different applications: Nmap, (Sect. 2.2), snmpwalk [35], and
wget [36]. To obtain the profile for a target PLC, the HoneyPLC Profiler requires
the IP address of the PLC device as the only input. Then, the Profiler runs a series of
queries to obtain the three discrete sets of data from the target PLC described before:
an SNMP MIB, a website directory, and an Nmap fingerprint. First, snmpwalk is
used for reading all the available Object IDs (OIDs) from the public community
string, creating an identical MIB to the one used by the PLC. OIDs may include,
among other important configuration settings, the unique identifier of the PLC, as
well as its base IP address. Second, Nmap’s OS detection is used to get the TCP/IP
stack fingerprint of the target PLC, in a process that includes scanning all well-
known TCP and UDP ports. This fingerprint will be later leveraged by HoneyPLC’s
Integration Framework to provide meaningful TCP/IP interactions as a response to
requests initiated by an attacker. Third, wget is used to download a complete copy of
the splash screen or administration website, if any. Finally, the HoneyPLC Profiler
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will create a custom directory that can be used by HoneyPLC, inside its dedicated
PLC Profile Repository, shown in Fig. 2 (1), to simulate the target PLC.

4.3 Supporting Operational Covertness

As described in Sect. 3, being able to engage attackers without revealing a honeypot
nature is crucial for obtaining valuable information on the vectors, techniques,
and goals being used for compromising PLCs. To this end, this section describes
how HoneyPLC supports meaningful network interactions leveraging the TCP, IP,
S7comm, SNMP, and HTTP protocols, which are widely used by PLCs in practice.

4.3.1 TCP/IP Simulation

Within HoneyPLC’s Integration Framework, depicted in Fig. 2, a sophisticated
TCP/IP Stack simulation is implemented by leveraging Honeyd [33], a popular
framework for honeypot simulation, as well as Nmap, discussed in Sect. 2.2. The
process is depicted in Fig. 3. Initially, when a new PLC is to be modeled by
HoneyPLC, Nmap is used to generate a detailed TCP/IP Stack fingerprint for it.
Next, such a fingerprint is integrated with the Honeyd fingerprint database, by
appending it to Honeyd’s nmap-os-db text file. Later, at runtime, when a tool

Fig. 3 The HoneyPLC personality engine: first, a PLC Profile is selected from the repository,
including its Nmap fingerprint (1). When an attacker tries to fingerprint HoneyPLC using Nmap,
such a tool will send a series of Probes to determine the OS or Device (2). HoneyPLC will then
reply with appropriately crafted responses that simulate a real PLC, thus effectively deceiving
Nmap and the attacker (3)
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like Nmap tries to fingerprint a HoneyPLC host, HoneyPLC Personality Engine,
leveraging Honeyd, will respond with the appropriate fingerprint information.
To achieve this, the Engine reads a particular fingerprint from Nmap’s database
and reverses it, which means that when Honeyd simulates a particular device, it
introduces its IP/TCP Stack peculiarities: TCP SYN packet flags, IMCP packet
flags, and timestamps. The generation of accurate Nmap fingerprints imposed a
variety of challenges. First, PLC devices of different manufacturers and models use
different UDP and TCP ports that are not standard or may not be properly defined
within the device manuals, e.g., port 2222 for the MicroLogix 1100 PLC. The
lack of heterogeneity required us to perform a manual inspection, which was time-
consuming and error-prone. Second, we analyzed the Nmap reports that contain
the fingerprint results and modified the format to be compatible with the Honeyd
fingerprint database. Third, an extensive analysis of the Nmap reports containing the
fingerprint results was also required, such that important changes can be introduced
for producing better results, i.e., changes in the overall format to make the newly
produced fingerprint compatible with the Honeyd fingerprint database. Additionally,
the creation of accurate Honeyd templates brought its own set of challenges. For
HoneyPLC to provide enhanced interaction capabilities, which can engage attackers
for extended periods of time (as we further describe in Sect. 4.3), we significantly
improved the standard simulation scripts included within Honeyd. Specifically,
we used the subsystem virtualization feature provided by Honeyd: this feature
facilitates the integration of the different HoneyPLC components.

4.3.2 S7comm Server

Within HoneyPLC’s Network Services Module, depicted in Fig. 2, the S7comm
server provides a sophisticated simulation of the Siemens proprietary protocol. It
simulates a real Siemens PLC and exposes several memory blocks via TCP port
102. At the time of writing this work, Siemens had not released the specifications
of S7comm protocol and the information that is available has been collected by
third parties like the Snap7 project [31] and the Wireshark Wiki [38]. We leveraged
the Snap7 framework [31, 40] to write an S7comm server application in C++. We
modified and recompiled the source code of the main Snap7 library to add our own
features. These include logging the S7comm interactions, ladder logic capture, and
PLC firmware specifications for all three Siemens PLC models, for example, CPU
model, serial number, PLC name label, and copyright among others.

4.3.3 SNMP Server

Within HoneyPLC’s Network Services Module, the SNMP Agent implements
an advanced simulation of the SNMP protocol along with believable MIB data,
effectively allowing HoneyPLC to reply to any external SNMP server query. SNMP
is commonly used in practice to monitor network connected devices and listens
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Fig. 4 The HoneyPLC SNMP and the Webserver agents. The MIB database and the website HTTP
files, obtained from a PLC profile, are first loaded by each agent (1). Then, the attacker may use
SNMPWalk as well as an HTTTP client to establish connection with HoneyPLC (2). Later, each
agent will reply to each request using the information obtained from the PLC profile (3)

to requests over UDP port 161. Since real PLCs do implement SNMP agents,
implementing this sub-component adds to the deception capabilities of HoneyPLC.
Our simulation process, shown in Fig. 4 (top), can be described as follows: in
practice, a typical SNMP setup includes a Manager as well as an Agent module.
The SNMP Manager continually queries the Agent for up-to-date data. an SNMP
Agent exposes a set of data known as Management Information base or MIB. In
order to simulate the SNMP protocol, we use the light Python application snmpsim,
which simulates an SNMP Agent based on real time or archived MIB data. When
an SNMP request is received by HoneyPLC, the SNMP Agent replies with an OID
as a real PLC would do.

4.3.4 HTTP Server

Finally, the HoneyPLC’s HTTP server provides an advanced simulation of the
HTTP server of the Real PLCs and serves websites found in real PLCs, as
illustrated in Fig. 4 (bottom). As an example, most Siemens PLC devices include an
optional HTTP service to manage some of its internal configuration features. This
functionality was in turn implemented with lighttpd [19], a lightweight webserver
to handle all HTTP quests. When an HTTP request hits HoneyPLC, its Integration
Framework relays the request to the lighttpd server. Later, the webserver replies with
the website data from a HoneyPLC profile.
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4.4 Ladder Logic Collection

HoneyPLC’s S7comm Server holds the novel Ladder Logic Capture feature. It
writes any ladder logic program that an attacker uploads to HoneyPLC. When an
adversary uploads a ladder logic program to any of the S7comm Server memory
blocks, while trusting it to be a real PLC, this feature automatically writes them into
the file HoneyPLC filesystem with the corresponding timestamp. These captured
ladder logic programs can be analyzed at a later stage at the byte level to expose
ladder logic instructions and then extract new attack patterns used by adversaries
targeting PLCs. We implemented the Ladder Logic Capture component leveraging
the Snap7 framework using C++, in a similar fashion as the S7comm Server.
Additionally, we modified the Snap7 framework main library files to integrate this
feature at the Linux OS level.

4.5 Implementing Record Keeping via Logging

The Interaction Data component holds all of the interaction data gathered by
HoneyPLC. It maintains two kinds of data. First, it contains all logs produced by
our S7comm servers, the SNMP agent, and the HTTP server. Second, it contains all
the ladder logic programs that get injected via the S7comm server. This component
communicates directly with the Network Services component. We configured
Honeyd, lighttpd, snmpsim, and the S7comm Server to automatically log all
interactions. The S7comm Server writes to the file system all interactions including
IP address of originating host, timestamp, and memory block ID in the case of
reading or writing. Next, snmpsim logs IP information what OIDs were accessed
and timestamps. Finally, the lighttpd webserver includes all the major features of
a modern webserver with detailed logging that includes IP address information,
accesses website files, and timestamps. All of them log every interaction all the
time.

5 Evaluation

As shown throughout Sect. 4, HoneyPLC is designed to effectively deceive attackers
into believing that they are dealing with real PLCs. This section starts by enu-
merating a set of experimental questions, which are based on the limitations of
existing approaches as presented in Sect. 3. Then we present a series of experiments
designed to provide affirmative answers to each question backed up by experimental
evidence. For this purpose, we used the following PLC models: Siemens S7-300,
S7-1200, and S7-1500, as well as the Allen-Bradley MicroLogix 1100 and the
ABB PM554-TP-ETH, which are shown in Fig. 5, as these models are common in
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Fig. 5 PLCs procured for experimental purposes including, from left to right, Siemens S7-300,
S7-1500, S7-1200, Allen-Bradley MicroLogix 1100, and ABB PM554-TP-ETH

practice. As an example, a query2 on Shodan [27], shows more than a 1700 Internet-
facing PLCs across several different countries. For each experiment, we describe
its environmental setup, the methodologies used, and the results obtained. Table 2
shows a summary of the experiments we performed comparing HoneyPLC with
other honeypots in the literature whose implementation was either available online
or was obtained from their authors upon request. A description of the obtained
results is provided next, and an extended discussion comparing HoneyPLC with
related work is shown in Sect. 6.

5.1 Experimental Questions

As an initial step, we now enumerate the research questions we have attempted to
collect evidence for by means of the experiments shown later in this section. For
each question, we describe how it relates to the limitations described in Sect. 3 and
what subsections presented later address it.

Q-1 Can HoneyPLC support different real PLCs?
Since current approaches provided limited support for various types of PLCs
being widely used by ICS in practice, we were interested in exploring the
capabilities of HoneyPLC to model different PLCs using the PLC Profiler Tool
described in Sect. 4.2. This question is related to Limitation L-1, as discussed in
Sect. 3. We strive to answer to this question in Sects. 5.2 and 5.2.5.

Q-2 Can HoneyPLC conceal its honeypot nature from attackers?

2 https://www.shodan.io/search?query=siemens+port%3A102.

https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
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Table 3 PLC devices supported by ICS Honeypots

Approach Supported PLC devices

Gaspot [50] Veeder Root Guardian AST

SCADA HoneyNet [39] Siemens CP 343-1

Conpot [16] Siemens S7-200, Allen Bradley LOGIX5561

Digital Bond’s Honeynet
[49]

Modicon Quantum PLC

DiPot [6] Siemens S7-200

SHaPe [20] IEC 61850-Compliant PLC

CryPLH [5] Siemens S7-300

S7commTrace [51] Siemens S7-300

Antonioli et al. [3] Generic PLC

HoneyPhy [24] Generic Analog Thermostat

HoneyPLC Siemens S7-300, S7-1200, S7-1500, Allen-Bradley MicroLogix 1100,

ABB PM554-TP-ETH

More specifically, can HoneyPLC fool widely used reconnaissance tools? Also,
we were interested in obtaining evidence regarding the interactions HoneyPLC
may have obtained when deployed in the wild, i.e., via an Internet connection.
This question is related to Limitations L-2 and L-3. We elaborate on this question
in Sects. 5.3, 5.4, and 5.6.

Q-3 Can HoneyPLC effectively capture Ladder Logic code?
Since capturing Ladder Logic code represents a highly desirable feature for
analyzing threats to ICS, we were interested in exploring the capabilities of
HoneyPLC, as described in Sect. 4, to properly carry out such task. This question
is related to Limitation L-4 and is addressed in Sect. 5.7.

5.2 Case Study: PLC Profiling

As mentioned in Sect. 3, current state-of-the-art honeypots for PLCs have been
modeled over a limited number of PLCs, as shown in Table 3, and support for
any extensions is quite limited. Therefore, we were interested in exploring the
capabilities of HoneyPLC to support PLCs of different models and manufacturers.

5.2.1 Profiling Siemens PLCs

First, we evaluate the ability of HoneyPLC to support PLCs manufactured by
Siemens which are very common both in industry deployments and in academic
research [42].
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5.2.2 Environment Description

For our first case study, we procured three Siemens PLCs: the S7-300, the S7-1200
and the S7-1500 models, which are shown in Fig. 5. Each PLC was connected to a
special power supply and data or Ethernet cables. Additionally, we used the Siemens
Step7 Manager, tools to configure IP addressing. We also deployed the HoneyPLC
Profiler Tool and Python 3 in a laptop host where we connected our PLCs.

5.2.3 Methodology

We connected each PLC model to our experimental laptop host and used our
command line-based HoneyPLC Profiler Tool to create the PLC Profiles for the
three PLCs. To launch the tool, we input the PLC IP address and the name of PLC
Profile directory. While the HoneyPLC Profiler Tool starts querying data from the
PLC progress messages are shown including error messages, if any. We encountered
some difficulties while developing and testing the Profiler Tool. First, we had to
expand the number of ports scanned to obtain a better Nmap fingerprint, so that
Nmap reports it with a higher confidence. We also had to make adjustments to
download the PLC websites to include images and correct HTML paths. Also, it
was necessary to manually modify the PLC profile HTML files to correct broken
links.

5.2.4 Results

Overall, we were successful in creating all three PLC profiles. These profiles
were saved in our experimental laptop host file system and were later used in
the other experiments depicted in this section. The HoneyPLC Profiler Tool took
approximately 5 min to create each profile and we only had to make some
small manual modifications to some HTML files, as mentioned before. For PLCs
produced by Siemens, the retrieval of their corresponding profiles may be facilitated
if the SNMP and the web server services are properly activated beforehand by
following the instructions provided by the manufacturer or by using any other
S7comm-enabled software, e.g., the Step7 Manager. Failure to perform this step
may result in the creation of an incomplete profile.

5.2.5 Profiling Allen-Bradley and ABB PLCs

Additionally, we were interested in exploring the capabilities of HoneyPLC to
support PLC manufacturers other than Siemens, so we can provide some general
recommendations for practitioners interested in obtaining additional PLC profiles.
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5.2.6 Environment Description

For this case study, we procured the Allen-Bradley MicroLogix 1100 and the ABB
PM554-TP-ETH PLCs, which are shown in Fig. 5. Additionally, we used Allen-
Bradley and ABB software tools to configure their IP addresses.

5.2.7 Methodology

As with our previous case study, we deployed the HoneyPLC Profiler Tool and
Python 3 in a laptop host and connected each PLC to a special power supply.
Also, we connected each PLC model to our experimental laptop host and used our
command line-based HoneyPLC Profiler Tool as before.

5.2.8 Results

We successfully produced a profile for each of the PLCs under analysis and obtained
the following recommendations to practitioners. First, for non-Siemens PLCs, it
may become necessary to identify the network services they provide, as different
vendors may implement a variety of protocols on different ports. As an example, the
Allen-Bradley MicroLogix 1100 PLC uses port 80 to implement a light web server,
similar to Siemens PLCs, whereas such a feature is not implemented by the ABB
PM554-TP-ETH. Second, both non-Siemens PLCs under study also fail to support
the SNMP service, which prevents the HoneyPLC Profiler Tool from retrieving a
MIB database. Third, the Allen-Bradley MicroLogix 1100 PLC implements the
industry standard EtherNet/IP protocol on port 2222 for configuration purposes,
which differs from Siemens models that use the proprietary S7comm protocol.
These differences may ultimately result in PLC Profiles that are different from the
ones obtained for Siemens PLCs and may need to be subsequently addressed on a
case-by-case basis. Fourth, whereas the Siemens PLCs use the proprietary S7comm
protocol for loading Ladder Logic programs, the Allen-Bradley MicroLogix 1100
uses the Ethernet/IP protocol. In such regard, the ABB PM554-TP-ETH PLC uses
the Nucleus Sand Database, which is mostly used for database record keeping, and
whose use in PLC devices is not customary. Because both protocols are not currently
supported by HoneyPLC, additional modifications may be required. For example,
for the M554-TP-ETH PLC Profile, we modified the Honeyd template to open port
1201 as a Nucleus Sand DB simulation that can be used through the subsystem
virtualization is not currently supported. For the MicroLogix 1100 PLC Profile, we
modified the Profiler Tool port scan range to include not only well-known ports but
also registered ports such as port 2222. Finally, Table 3 provides a comparison of
the PLC models supported out of the box by related honeypots for ICS, which were
also shown in Table 1. The positive results obtained in our two case studies give
support to answer Q-1 in the affirmative.
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5.3 Resilience to Reconnaissance Experiment

The moment the true nature of HoneyPLC (or any other honeypot) is revealed
to an attacker, the quantity and value of the gathered interaction data may sig-
nificantly decrease. Therefore, we aimed to test the resilience of HoneyPLC to
Nmap and PLCScan, described in Sect. 2, which are well-known tools for recon-
naissance. Additionally, we tested how existing honeypots, namely Gaspot [50],
S7commTrace [51], SCADA HoneyNet [39], and Conpot [30], perform in this
regard.

5.3.1 Environment Description

Our experimental setup was composed of two physical computers: a desktop and a
laptop host. The desktop host featured Ubuntu 18.04 LTS along with HoneyPLC,
as well as the following tools: Honeyd, lighttpd, snmpsim, and S7comm server.
We built Honeyd version 1.6d from source; the latest version is available in the
official GitHub repository [9]. Also, we installed the lighttpd web server version
1.4.45. Next, we installed snmpsim version 0.4.7 and all its dependencies. Finally,
we installed our S7comm server and our custom library. Conversely, the laptop
host included the latest version of Nmap 7.80 as well as the three Siemens PLCs
fingerprints in Nmap’s fingerprint database nmap-os-db that were obtained as a
result of the previous experiment. Additionally, we installed the latest version of
PLCScan obtained from GitHub [43]. Both hosts were directly connected via an
Ethernet cable. Subsequently, we downloaded and deployed the related honeypots
mentioned before and connected them to the scanning host so that all of them would
be in the local network.

5.3.2 Methodology

To create a baseline to compare the results of our experiments, the Nmap confidence
data of the real PLCs featured in the previous experiment was obtained. With that in
mind, a second test environment was composed of an additional host with Ubuntu
18.04 LTS and Nmap 7.80. Later, the additional host was directly connected to one
of the three different PLCs (S7-300, S7-1200, and S7-1500) using an Ethernet cable.
We installed the Step7 Manager in order to configure the network settings of the
PLCs. Next, two different sets of Nmap scans were conducted with OS detection
enabled: one set for HoneyPLC and another set for the real PLCs. Each PLC
model was scanned 10 times. For the HoneyPLC experiment, the corresponding
HoneyPLC Profile was installed so that the aforementioned applications were
correctly configured. Next, we used PLCScan to scan each PLC Profile in similar
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Fig. 6 Nmap scan results for
the S7-300 PLC profile

fashion as the Nmap methodology. Afterwards, we turned to Gaspot, S7commTrace,
SCADA HoneyNet, and Conpot. Each honeypot was scanned with Nmap’s OS
detection enabled 10 times. Finally, we used PLCScan on S7commTrace, SCADA
HoneyNet, and Conpot. Gaspot was omitted as it does not support the S7comm
protocol.

5.3.3 Results

The results of our Nmap experiment can be seen in Fig. 7 and show that for all
three PLC models, the real PLCs gets the best confidence by a small margin.
However, our PLC Profiles as provided by HoneyPLC were really close behind,
thus providing positive evidence that our approach can provide effective covertness,
as required by our question Q-2. When Nmap cannot detect a perfect OS match,
it suggests near-matches. The match has to be very close for Nmap to do this by
default. Nmap will tell you when an imperfect match is printed and display its
confidence level (percentage) for each guess [32]. As an example, Fig. 6 shows the
Nmap Scan results for our S7-300 PLC Profile. These results are encouraging since
for all scans across all sets Nmap identified the correct PLC model with the highest
confidence. Our PLCScan experiments were also successful, as we were able to
obtain and provide real PLC data using PLCScan against HoneyPLC for all three
PLC Profiles. In addition, SCADA HoneyNet was identified as a Siemens CP 343-
1 PLC, and however, Gaspot, S7commTrace, and Conpot were fingerprinted as
Linux OS with a 100% confidence, with no mention of any PLC device. Regarding
PLCScan, Conpot was identified as an S7-200 PLC and SCADA HoneyNet and
S7commTrace provided connection information but displayed an empty PLCScan
report. Our results are even more significant due to the fact that a Linux kernel
simulation of the TCP/IP Stack, as implemented by several related approaches,
including Gaspot and Conpot, will not deceive Nmap [5].
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Fig. 7 Nmap scan results. All three profiles obtained at least a 90% confidence rate. The S7-300
and S7-1200 profile obtained rates comparable with their real counterparts. Gaspot and Conpot are
fingerprinted as a Linux OS host with a 100% confidence, so they are excluded from this chart

5.4 Shodan’s Honeyscore Experiment

As with the previous experiment, Shodan, described in Sect. 2.2, is actively
leveraged in practice, along with its corresponding Shodan API to detect honeypots
exposed to the Internet with a high degree of accuracy. Therefore, we were interested
in the capabilities of HoneyPLC to deal with this state-of-the-art tool.

5.4.1 Environment Description

For this experiment, we deployed three AWS EC2 instances accessible from the
Internet with the following specifications: 2 vCPUs, 4GB RAM, and Ubuntu 18.04
LTS OS, exposing TCP ports 80 and 102 and UDP port 161. Then, we deployed
HoneyPLC on each one of them featuring all of our three PLC profiles, following
the configuration steps detailed in the previous experiment. We also deployed four
additional AWS instances hosting Conpot, Gaspot, S7commTrace, and SCADA
HoneyNet.
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Fig. 8 Shodan Honeyscore results. Our HoneyPLC PLC profiles perform better than other
honeypots found in Shodan and at the same level as real PLCs

5.4.2 Methodology

We obtained the Shodan Honeyscores, whose methodology is described in Sect. 2.2,
of each of our HoneyPLC PLC Profiles, other honeypots for the same PLC models
that were publicly exposed to the Internet and Gaspot, Conpot, S7commTrace, and
SCADA HoneyNet. For such a purpose, we leveraged Shodan to gather data of
Internet-facing real PLCs and PLCs flagged as honeypots. We looked at open ports,
geolocation, Honeyscore, PLC model and IP addresses. Later, we compared these
data to the one obtained for our HoneyPLC PLC Profiles. Once deployed to the
Internet, it took about a week for Shodan to index our honeypots and identify the
S7comm and HTTP services on ports 102 and 80.

5.4.3 Results

The results of our Shodan experiment, depicted in Fig. 8, show that Shodan assigns
a Honeyscore of 0.0 to our S7-300 profile and how this Honeyscore compares to
real S7-300 PLCs and other S7-300 honeypots found in the wild. Moreover, our
S7-1200 and S7-1500 profiles got a 0.3 Honeyscore, which is comparable with
the one obtained by real S7-1200 PLCs as indexed by Shodan. Unfortunately, at
the time this experiment was performed, we were not able to find any S7-1200
honeypots in Shodan for comparison. Regarding the other four AWS instances,
S7commTrace, Gaspot, and SCADA HoneyNet were not indexed by Shodan as
they crashed when Shodan’s crawler tried to interact with them. Thus, they could
not be assigned a Honeyscore. Conpot, however, was successfully indexed and
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was assigned a 0.3 Honeyscore. Overall, these results add compelling evidence
with respect to Question Q-2, showing that HoneyPLC is effective at maintaining
covertness against state-of-the-art reconnaissance tools.

5.5 Step7 Manager Experiment

We designed an experiment to test the capabilities of the HoneyPLC S7Comm
Server, discussed in Sect. 4.3, against Step7 Manager [4], a Siemens proprietary
software used to configure, write, and upload ladder logic programs to PLCs. For
comparison purposes, we attempted to perform the same experiment on Conpot,
the SCADA HoneyNet, and S7commTrace, which claim support for the S7comm
protocol, as shown in Table 2.

5.5.1 Environment Description

For this experiment, we used a Windows XP virtual environment installed on a
desktop host. Additionally, we installed HoneyPLC, the related work honeypots
shown in Table 2, and all three Siemens PLC Profiles in different Ubuntu 18 LTS
VMs and connected them to the Windows XP host.

5.5.2 Methodology

To test the compatibility of a particular honeypot with Step7 Manager, we performed
the following: first, we attempted a direct, initial connection to the tool by using the
‘Go Online’ GUI feature. Second, we used Step7 Manager to list all the memory
blocks contained within a given honeypot. Third, we also tried to upload a memory
block to each honeypot, and finally, in a reciprocal action, we tried to download the
contents of a memory block, which was previously stored by each honeypot under
test.

5.5.3 Results

Our results show that HoneyPLC is the only implementation capable of han-
dling all of the functionality previously mentioned, as is shown in Table 2.
Conpot, S7commTrace, and SCADA HoneyNet were able to establish the initial
connection, and however, the Step7 Manager threw a connection timeout error,
preventing any further interaction and resulting in an aborted execution. Moreover,
as S7commTrace is a high-interaction honeypot that implements features similar
to the ones provided by HoneyPLC’s S7comm Server, we strove to provide an
extended comparison between them. The HoneyPLC S7comm Server improves over
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Table 4 Comparison of
S7comm function codes

S7comm implementation Functions Subfunctions

HoneyPLC 13 18

S7commTrace 12 14

S7commTrace by providing more functions and subfunctions as shown in Table 4.
Specifically, it adds an error response function and insert block, delete block,
blink LED, and cancel password subfunctions. The error response function and the
delete and insert block functions, in particular, are important when injecting ladder
logic programs and connecting with Step7 Manager. Overall, besides providing
compatibility with Step7 Manager, HoneyPLC also provides enhanced capabilities
for capturing ladder logic, e.g., reading and writing memory blocks, which are not
supported by S7commTrace.

5.6 Internet Interaction Experiment

In order to explore the capabilities of HoneyPLC to interact with external, non-
controlled agents, e.g., attackers, we designed an experiment intended to expose the
PLC Profiles discussed in previous experiments to remote connections via Internet.

5.6.1 Environment Description

We leveraged the environmental setup we designed for our previous Shodan-based
experiment in Sect. 5.4. Also, we used the same AWS EC2 instances equipped with
PLC Profiles for the S7-300, S7-1200, and S7-1500 PLCs.

5.6.2 Methodology

We exposed the EC2 instances to the Internet for a period of 5 months. Using
the HoneyPLC logging capabilities discussed in Sect. 4.5, we logged all received
interactions. Later on, we analyzed such logs and obtained the results we discuss
next.

5.6.3 Results

As a result of this experiment, more than 5GB of data were recorded. Table 5
shows the different S7comm function commands received by each PLC Profile.
The fact that we recorded these functions means that external agents interacted
with HoneyPLC beyond a simple connection performing reconnaissance tasks.
Additionally, we received 4 PLC Stop functions on our S7-300 Profile, which stops
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Table 5 S7comm function commands received

PLC profile Setup communication Read SZL PLC stop List blocks

S7-300 600 1013 4 80

S7-1200 202 324 0 0

S7-1500 292 343 0 0

Table 6 HTTP and SNMP interactions received

PLC profile HTTP conversations HTTP login attempts SNMP get requests

S7-300 2060 205 1925

S7-1200 1791 30 567

S7-1500 13 0 1271

the current ladder logic program execution, suggesting that external agents tried to
disrupt the PLCs’ operation. Table 6 shows that our honeypots also received thou-
sands of HTTP conversations and logged multiple HTTP authentication attempts
on their administration websites, including the usernames and passwords used by
the external parties. These authentication attempts could have been made by web
crawlers or malicious actors trying different well-known or default passwords to log
into the PLCs admin website. Additionally, we also recorded thousands of SNMP
get requests that downloaded our PLC Profile’s MIBs several times. Table 7 shows
the distribution of S7comm connections based on geographical location. It can be
noted that countries with most connections have historically been either the target
or the initiators of attacks against ICS [14] recorded in the literature. Finally, at the
time of writing this chapter, no attempts to inject malicious ladder logic into our
honeypots were recorded. Such an attack would have been signaled by an attempt to
write a memory block inside a PLC. Despite this limitation, the amount and nature
of the interactions obtained provide additional support for affirmatively answering
Question Q-2, showing that HoneyPLC can effectively engage external agents and
tools.

5.7 Ladder Logic Capture Experiment

Finally, we were interested in exploring the capabilities of HoneyPLC to properly
collect Ladder Logic malware that is injected by attackers, following the Case
Scenario described in Sect. 4.1.

5.7.1 Environment Description

For this experiment, we leveraged the same HoneyPLC AWS test environment
described in Sect. 5.4 for our Shodan experiment. Additionally, we locally deployed
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Table 7 S7comm connections received by geolocation

Geo-location S7-300 S7-1200 S7-1500 Geo-location S7-300 S7-1200 S7-1500

United States 359 142 250 Netherlands 22 13 11

United Kingdom 2 1 3 Japan 8 2 2

Turkey 2 0 1 Italy 1 0 0

Switzerland 3 1 1 Iceland 1 1 2

Sweden 1 1 1 Hong Kong 2 1 1

South Korea 1 0 0 Germany 18 9 12

Slovakia 0 1 1 France 10 5 7

Singapore 4 3 5 Denmark 1 1 0

Russia 28 12 14 China 42 16 26

Romania 6 2 4 Canada 3 2 3

Poland 1 0 0 Bulgaria 2 1 0

Panama 2 1 3 Belize 3 3 3

Fig. 9 Ladder Logic payload
example found in the Stuxnet
malware

Conpot, Gaspot, S7commTrace, and SCADA HoneyNet. For Gaspot, we down-
loaded the latest version from GitHub [15] and installed it in an Ubuntu 18 LTS
host. Next, for Conpot, we also downloaded the latest version from GitHub [30]
and installed it from source in an Ubuntu 18 LTS host. Finally, we deployed the
latest version of the SCADA HoneyNet [39] also in an Ubuntu 18 LTS. We faced
some problems deploying the SCADA HoneyNet as it is currently not maintained
at all (the latest version was released in 2004), and however, we were able to deploy
the S7comm portion of the honeypot, enabling us to conduct this experiment. To
test our implementation, we employed PLCinject [18], a research tool published by
the SCADACS team, which is capable of injecting arbitrary compiled ladder logic
programs into a PLC memory block. Figure 9 shows a sample of the ladder logic
code dropped by the Stuxnet malware. We also set up a laptop host with Ubuntu
18.04 LTS installed with the latest version of PLCinject available on GitHub [41].
Since PLCinject also leverages the Snap7 framework, we installed a custom library
and compiled PLCinject from source. We also used the Windows XP host described
in Sect. 5.5 with Step7 Manager.

5.7.2 Methodology

Figure 10 illustrates our setup and methodology. The PLCinject host contains the
ladder logic program sample that PLCinject will upload into HoneyPLC, which



176 E. L. Morales et al.

Fig. 10 Capturing Ladder Logic: initially, the attacker selects a malicious program and leverages
PLCinject (1), which then establishes communication with an AWS instance running Honey-
PLC (2). Malicious code is injected into a previously selected memory block exposed by the
S7comm server (3) and finally written into a file repository (4)

resides inside an AWS instance exposing a set of standard PLC memory blocks. We
leveraged the capabilities of PLCinject to connect and interact with the HoneyPLC
host, eventually injecting the desired Ladder Logic program by using the command
line. Later, using the Step7 Manager GUI, we created a new project and wrote
a sample ladder logic to be injected into HoneyPLC. Next, we used the Step7
Manager to list the available memory blocks and then use the upload function to
inject the sample ladder logic program into HoneyPLC. Later, we conducted another
set of experiments focused on Gaspot, Conpot, S7commTrace, and the SCADA
HoneyNet. We configured each of the honeypots with the correct IP addresses and
ports and used PLCinject and the Step7 Manager to write the sample program into
them, following the same process used for HoneyPLC.

5.7.3 Results

Our experiments were successful as we were able to inject a sample ladder logic
program into HoneyPLC using both, PLCinject and the Step7 Manager. After the
injection was completed, we logged into our honeypot file system and found the
ladder logic file with its corresponding timestamp, which matched the contents of
the blocks previously updated to PLCinject, as described in the previous paragraph.
More to the point, after the Step7 Manager injection was completed, we downloaded
our own sample program from HoneyPLC’s S7comm server and used the ladder
logic editor (included with Step7 Manager) to corroborate that our sample program
was in fact saved in HoneyPLC’s S7comm server. It is worth mentioning that the
Step7 Manager did not crash or threw any errors while interacting with HoneyPLC’s
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S7comm server. This adds evidence as to the level of interaction that HoneyPLC
provides. Regarding the Gaspot honeypot, our results show that it is not possible
to inject any program into it. In fact, the TCP connection times out, and there is
no reply. The results from Conpot show that it can, in fact, open a connection to
TCP port 102, and however, it is reset, and the program upload cannot continue.
S7commTrace results in the S7comm connection not being established. Finally, the
S7comm portion of the SCADA HoneyNet accepts the TCP port 102 connection and
starts the upload function needed to upload the ladder logic program, and however,
after the upload function ends, there is no data saved or even transmitted. There
results provide evidence for answering Question Q-3 affirmatively.

6 Discussion and Future Work

Before rounding up this chapter, we now present an extended discussion on the
novelty, the features, and the experimental results obtained using HoneyPLC, as
presented in previous sections. Also, we engage in a short discussion on the
observed shortcomings of our approach and discuss interesting topics for future
work that may benefit from using HoneyPLC as a supporting framework.

6.1 Comparing HoneyPLC with Previous Approaches

Following the comparison shown in Table 1, HoneyPLC provides significant
improvements over the current state of the art of honeypots for PLCs. First, Honey-
PLC provides better covertness capabilities than the ones provided by related works
in the literature, as shown in the experimental procedures summarized in Table 2.
Moreover, as detailed in Sect. 4.3, HoneyPLC provides advanced TCP/IP simulation
based on Honeyd, plus the careful simulation of different domain-specific protocols.
Whereas the simulation of various protocols is shared by many approaches in the
literature, only HoneyPLC and SCADA HoneyNet [39] leverage the rich simulation
features provided by the Honeyd framework. Second, the extensibility features of
HoneyPLC, discussed in Sect. 4.2, allow for the effective simulation of different
PLCs deployed in practice, as it was shown in the experimental procedures detailed
in Sect. 5.2. Such a feature is not shared by any other approach in the literature, as
shown in Table 1. Only a few approaches provide limited extensibility features, but
those are mostly based on manually changing some configuration settings for the
PLCs they support. As shown in Sect. 4.2, the HoneyPLC’s Profiler Tool supports
the collection and configuration settings for different real PLCs, which may allow
for practitioners to create and distribute PLC Profiles for HoneyPLC for many
different brands and models used in practice. Finally, HoneyPLC’s Ladder Logic
Capture feature is optimal for the understanding and analysis of malicious programs
tailored for PLCs, which is not provided by any other related work, as shown in
Table 2.
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6.2 Limitations

Despite the innovative features of HoneyPLC and the promising evaluation results
shown in Sect. 5, we identified the following limitations to our approach. First,
as shown in Table 1, HoneyPLC does not provide support for modeling physical
interactions as depicted by PLCs in practice. To solve this, future versions of
HoneyPLC may be enhanced with a generic, general-purpose framework that
facilitates the collection and subsequent modeling of physical interactions that
can further engage and deceive attackers. Second, despite numerous attempts, we
were unable to test HoneyPLC against Stuxnet, shown in Sect. 2.3, up to the
point in which PLCs are injected with Ladder Logic code. This problem was also
encountered by seasoned partners in industry, as it was revealed to us in private
conversations. As an alternative, we strove to replicate a similar code injection
scenario as shown in Sect. 5.7. Finally, as discussed in Sect. 5.6, we were not able
to capture any Ladder Logic code injection attempts while exposing HoneyPLC to
the internet during an extended period of time. We believe that such a thing may
not necessarily represent a limitation in the capabilities of our approach, as shown
in Sect. 5.7. However, we agree that future work focused on capturing instances of
malicious code may obtain significant evidence of the suitability of HoneyPLC for
engaging and deceiving external agents.

6.3 Future Work

First, we plan to add support to other ICS specific network protocols such as
Modbus, which is widely implemented by other approaches in the literature. Second,
we plan to expand the PLC Profile Repository of HoneyPLC, which is graphically
depicted in Fig. 2 as an important part of our approach, to include several different
PLC Profiles simulating other real PLCs widely used in practice, which may
have been produced by different manufacturers and may include a diverse set of
configuration options. We believe such a feature will likely increase the impact of
HoneyPLC in many different projects in the research community, as well as in real-
life ICS environments. Third, we plan to use HoneyPLC as a basis for simulating
rich ICS infrastructures completely in software, modeling components like SCADA
and other devices. Current ICSs are proprietary, closed, and composed of a plethora
of costly devices, which clearly complicates the effective development and testing of
new protection tools by researchers. In such regard, we believe that HoneyPLC can
be combined with other emerging technologies such as software-defined networks
(SDN) [22], to produce an automated, highly configurable, and automated approach
effectively simulating ICS environments. Finally, we plan to turn HoneyPLC into a
comprehensive suite for malware analysis for ICS by incorporating Ladder Logic
analysis tools such as ICSREF [17], as well as other works such as PLCinject,
featured in Sect. 5.7.
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7 Conclusions

Attacks targeting ICS are now more real than ever and their consequences may be
catastrophic. In such regard, honeypots help us understand and prepare for these
attacks, and however, current implementations do not allow us to analyze and
tackle brand new threats as desired. To overcome this situation, we have introduced
HoneyPLC, a convenient and flexible honeypot, which significantly pushes the
state of the art of the field forward. Additionally, we have provided experimental
evidence that demonstrates that HoneyPLC outperforms existing honeypots in the
literature, achieving a performance level comparable to real PLC devices. Finally,
the HoneyPLC advanced extensibility features, which may allow HoneyPLC to
better serve the heterogeneous world of ICS. As an example, we expect for
practitioners to create and openly distribute many new PLC Profiles for a variety
of PLCs used in practice, thus positioning HoneyPLC not only as a helpful tool
for preventing and deterring ongoing attacks but also as the starting point for
designing and evaluating new protection technologies for mission-critical cyber-
physical systems and infrastructure.
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