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ABSTRACT

Many services that make our modern society work are possible thanks to Cyber-Physical Systems

(CPS). These services include electricity generation and distribution (Industrial Control Systems

(ICS)), Global Positioning System (GPS) and remote sensing (satellites), and transportation (con-

nected and autonomous vehicles). Many CPS rely on and buttress geospatial data such as GPS

location, satellite imagery, and light detection and ranging (LiDAR) point clouds. Due to their

importance, CPS have been the target of cyberattacks that aim to disrupt our society. One of the

tools that we can leverage to protect CPS is cyber threat intelligence (CTI). CTI is threat information

aggregated, transformed, analyzed, interpreted, or enriched to understand a threat actor’s motives,

targets, and attack behaviors. However, current CTI on CPS is limited as current methods cannot

collect and analyze data that can be converted into useful CTI thus leaving CPS exposed to further

attacks.

This dissertation addresses this problem by developing new methods that advance the state of

the art in CTI processing and collection phases, specifically for cyber-physical systems which we

call CTI-for-CPS. We close the above research gap by introducing three novel research projects that

push the boundaries of CTI-for-CPS, specifically, industrial control systems (ICS), space systems

(SS), and connected and autonomous vehicles (CAV). The first contribution is a novel threat

taxonomy for programmable logic controllers (PLCs) used in ICS which are well-established CPS,

to improve how we categorize and analyze threats in ICS. The second contribution is a satellite

honeypot, a novel approach that allows us to gather empirical CTI data on threat actors’ techniques

targeting satellites. The third and final contribution is a CAV cybersecurity sandbox. This sandbox

simulation allows us to test cyberattacks on one or multiple CAVs to collect raw CTI data that can

later be analyzed, marking a significant step forward in our understanding of cyber threats targeting

CAVs.

These three contributions introduced in this dissertation present novel approaches to collect,

aggregate, and analyze data to produce valuable CTI-for-CPS. Failing to advance the state of the
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art of CTI-for-CPS risks leaving CPS exposed as we will not understand the latest techniques that

adversaries use to target CPS, hindering our ability to develop effective countermeasures. Without

proper countermeasures in place, the security of our critical infrastructure is at risk of cyberattacks.
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CHAPTER I: INTRODUCTION

The critical infrastructure on which our society depends upon, such as the electrical grid,

is buttressed by Cyber-Physical Systems (CPS). CPS are systems that integrate computational

and physical components in order to carry out a physical process. CPS allow complex physical

processes to become more efficient as they integrate computer networks and novel features such as

data analytics and cloud connectivity [9]. Examples of CPS include ICS used for food production,

Space Systems used for Earth’s remote sensing, and connected and autonomous vehicles (CAVs)

used for transportation.

However, along with CPS’ capabilities come cybersecurity risks, specifically, the risk of cyber

threats and attacks that can compromise these systems’ safety, reliability, and integrity. A successful

cyberattack on a CPS has the unique characteristic of physically endangering real-world assets such

as nuclear facilities in the case of ICS, roads in the case of CAVs, and satellite imagery availability

in the case of satellites. Compromising such assets might result in millions of dollars’ worth

of damage or, even worse, the loss of human life. One of the most infamous instances of a

successful CPS cyberattack is the 2011 Stuxnet malware attack. Stuxnet sabotaged centrifuges

used to enrich nuclear fuel, causing significant physical damage [10]. Since Stuxnet, several other

CPS cyberattacks have occurred; for example, in 2017, researchers gained control over vulnerable

features of Tesla and BMW autonomous cars through Wi-Fi and browser vulnerabilities using

previously unknown exploits [11].

One key component of an effective cybersecurity strategy for CPS is cyber threat intelligence

(CTI) [12, 13]. CTI refers to the process of collecting, analyzing, and disseminating informa-

tion about cyber threats and adversaries to inform defensive measures and decision-making [14].

By leveraging CTI, organizations can gain insights into emerging threats, adversary tactics, and

vulnerabilities specific to various computer systems, including CPS, enabling them to proactively

mitigate risks and enhance their security.

This dissertation introduces CTI-for-CPS, a methodology to advance the state of the art of

the collection and processing phases of the cyber threat intelligence lifecycle, specifically on
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ICS, satellites, CAVs, which are crucial examples of CPS. The problem to be addressed in this

dissertation is developing new methods that advance the state of the art in cyber threat intelligence

processing and collection phases for cyber-physical systems. Although there has been previous

efforts to improve CTI-for-CPS [15], current methods for processing and collecting CTI for CPS

are limited [16]. For example, there is no satellite honeypot that allows us to collect raw cyber

threat intelligence data. Current processing and collecting methods are focused on commodity

computers.

Chapter # Publication Remarks
1 – Introduction and disserta-

tion objectives and contri-
butions

2 – Background
3 López-Morales, Efrén, Ulysse Planta, Carlos

Rubio-Medrano, Ali Abbasi, and Alvaro A. Car-
denas. ”SoK: Security of Programmable Logic
Controllers.” In 33rd USENIX Security Sym-
posium (USENIX Security 24), pp. 7103-7122.
2024.

Published

4 López-Morales, Efrén, Ulysse Planta, Gabriele
Marra, Carlos González, Jacob Hopkins, Majid
Garoosi, Elı́as Obreque, Carlos Rubio-Medrano,
and Ali Abbasi. ”HoneySat: A Network-based
Satellite Honeypot Framework.” arXiv preprint
arXiv:2505.24008 (2025).

Under review

5 López-Morales, Efrén, and Carlos Rubio-
Medrano. ”Grand Hack Auto: A Vehicle-
to-Cloud Threat Analysis Framework for Con-
nected and Autonomous Vehicles.”

Under review

6 – Conclusion and future
work

Table 1.1
Relationship between dissertation chapters and papers
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1.1 Problem Statement

The problem to be addressed in this dissertation is to study and develop new methods that

advance the state of the art in cyber threat intelligence processing and collection phases, specifically

for cyber-physical systems. Current methods for processing and collecting cyber threat intelligence

of cyber-physical systems are limited [12]. For example, no satellite honeypot currently allows us

to collect raw cyber threat intelligence data. Current processing and collecting methods are focused

on commodity computers. For example, there is ample research done on cyber threat intelligence

methods in social media security, cloud computing security, and more [17]. However, these

methods are not directly transferable to cyber-physical systems as they have different architectures

and purposes. Cyber threat intelligence is crucial for developing countermeasures and security

strategies. Failing to develop effective cyber threat intelligence processing and collecting methods

for cyber-physical systems would result in poor threat intelligence that would limit our capacity to

develop effective countermeasures and security strategies.

1.2 Proposed Work

The main goal of this dissertation is to advance the state-of-the-art CPS CTI. Specifically, we

are interested in advancing the two Phases of the CTI lifecycle depicted in Fig. 2.1: data collection

(Phase 2) and data processing (Phase 3). To accomplish this goal, we divided our research into

three objectives.

1. Develop a novel taxonomy of threats against PLCs and ICS in general. This new taxonomy

requires an extensive literature review of the known threats targeting PLCs. It will allow us

to better process CTI in Phase 2 of the CTI life cycle. PLCs and ICS are well-established

CPS and would give us insight on how to improve CTI for ICS and CPS more broadly. This

literature review and taxonomy will help us identify and understand research gaps in the

following two objectives.

2. Develop the first satellite honeypot. Honeypots allow us to collect raw threat intelligence

data for satellite systems. To develop our honeypot, we leveraged the knowledge gained on
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objective 1; specifically, from the literature review, we learned that honeypots are a powerful

tool for collecting raw data. This objective is based on the results obtained from Objective 1,

specifically, the research gaps learned from the literature review.

3. Finally, develop a CAV security framework. This framework will leverage the sandbox

methodology, a sandbox is a testing environment that isolates untested and untrusted code

and protects critical resources, such as production servers, from testing changes that could

have unintended consequences in the production environment. A CAV sandbox will allow

us to test TTPs and gather threat intelligence raw data.

1.3 Dissertation Outline

This dissertation is organized into six chapters. The current chapter, Chapter 1 introduces

the research motivation, problem statement, overarching objectives, and key contributions. Chap-

ter 2 introduces the necessary background concepts that will be referenced during the rest of the

manuscript. Chapters 3 through 5 each present a major contribution, and are based on the publi-

cations produced during the course of the Ph.D. program, shown in Table 1.1. Chapter 3 proposes

a taxonomy for securing ICS, providing foundational insights for classifying and assessing attacks

and countermeasures. Chapter 4 presents the design, and evaluation of a satellite honeypot system,

which was developed to study adversarial behavior in space systems. Chapter 5 introduces a CAV

sandbox framework that integrates realistic vehicle simulation with cloud-based threat scenarios.

Finally, Chapter 6 concludes the dissertation by summarizing the research findings and describing

future directions.

4



CHAPTER II: BACKGROUND

2.1 Cyber-Physical Systems

CPS include physical and computational components and integrate physical processes with

computing and networking capabilities to offer otherwise unavailable levels of automation and

connectivity [9]. Examples of CPS include Industrial Control Systems (ICS), Connected and

Automated Vehicles (CAV), and satellites. CPS makes our modern society work by enabling critical

infrastructure services such as electricity generation and distribution (ICS), Global Positioning

System (GPS), remote sensing (satellites), and transportation (CAV). Many CPS rely on sensors

and actuators that enable the CPS to sense the physical world around it and control physical

equipment that can change the physical environment. These sensors include LiDAR, GPS, and

temperature [18] and they feed different types of data to the CPS. For example, LiDAR provides

point data that a CAV can use to sense its environment. Satellites use sensors such as GPS to

sense its latitude and longitude. The term CPS was coined in late 2006 by the NSF in the United

States [19] and has seen copious research since, including security research. Indeed, Presidential

Policy Directive 21 recently revamped intelligence sharing on critical infrastructure. However,

there is a research gap in the literature regarding CPS cyber threat intelligence [20]. This work will

focus on the security of three CPS: industrial control systems (ICS), satellites, and connected and

autonomous vehicles (CAVs).

2.1.1 Industrial Control Systems (ICS)

ICS manages and controls critical utilities such as the power grid, water treatment plants, and

transportation systems. ICS comprises multiple components, including sensors, actuators, and

Programmable Logic Controllers (PLCs). PLCs control industrial processes such as the ones used

in water treatment plants by running special programs known as control logic. Control logic reads

inputs from sensors and outputs instructions to actuators based on the control logic and input

data [21].
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2.1.2 Satellite Systems

Satellites are complex CPS designed to withstand outer space conditions and tasked with

specific missions. These missions include Earth’s remote sensing and GPS location, among others.

Satellites’ architectures are opaque and varied, but most include the following five subsystems [22].

1) The Command and Data Handling System (CDHS) manages all satellite functions, such as

telecommand parsing. The CDHS works alongside an onboard computer (OBC) and flight software

(FS). 2) The Electrical Power System (EPS) manages power generation, supply, and distribution to

and from the other satellite subsystems. 3) The communications (COM) subsystem consists of an

antenna and a radio which communicates with the ground station. 4) The Attitude Determination

and Control System (ADCS) allows the satellite to control its three-dimensional position. This is

useful when the satellite needs to point in a specific direction, for example, toward the sun. The

ADCS uses sensors and actuators to determine and change the satellite’s attitude. 5) The payload is

the subsystem used to accomplish the satellite’s mission. The payload can vary widely depending

on the mission, for example, it can include red, green and blue (RGB) or near-infrared cameras for

remote sensing missions.

2.1.3 Connected and Autonomous Vehicles (CAVs)

Connected and Autonomous Vehicles (CAVs) leverage multiple technologies to communicate

with nearby vehicles and infrastructure to provide features such as vehicle automation to drive

decision-making [23]. CAVs can be self-driving vehicles that use artificial intelligence or computer

systems to drive themselves without human operators and are connected via cellular or other

networks to send and receive data from other CAVs, transportation infrastructure such as green

lights and even pedestrians.

2.2 Cyber Threat Intelligence (CTI)

CTI is the process of collecting, analyzing, and disseminating information about cyber threats

and adversaries to inform defensive measures and decision-making. CTI is produced during the

CTI life cycle (depicted in Fig. 2.1), which includes five Phases. 1) Requirement planning, 2) data
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Figure 2.1
Cyber Threat Intelligence Life Cycle. This dissertation focuses on Phases 2 and 3 (blue)

collection, 3) information processing, 4) intelligence analysis, and 5) dissemination [14]. Each

of these stages leverages different methods to accomplish its objectives. Requirement planning

involves defining what type of intelligence needs to be collected and how the intelligence will be

used. Data collection involves identifying threat intelligence sources to start raw data collection.

Raw data can be obtained in various ways, including web scrapping, deploying honeypots, running

breach and attack simulations among others [24]. Data processing involves structuring raw data,

discarding noisy or irrelevant data, and categorizing the data using models and taxonomies. Data

analysis involves analyzing the information obtained in Phase 3 to understand threat actors’ tactics,

techniques, and procedures (TTPs). Lastly, data dissemination involves deploying the intelligence

obtained in Phase 4 into an intelligence repository or database that can be used by a threat intelligence

tool such as Security Information and Event Management frameworks or SIEMs.

Recently, industry and government institutions have integrated CTI as a key part of their

cybersecurity strategy; these include Cisco, Microsoft, and National Security Agency [25], to name

a few. These CTI strategies have been focused mainly on commodity computer and enterprise

security. For example, Microsoft’s threat intelligence efforts are focused on threats such as social

engineering, e.g., phishing, cloud computing, and ransomware [26].
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2.2.1 Data Collection (Phase 2)

Collection includes those activities related to data acquisition required to satisfy the require-

ments specified in the collection strategy. This includes developing and coordinating collection

sensors, exercising authoritative control of specific collection operations, monitoring the overall

satisfaction of requirements, and assessing the effectiveness of the collection plan to satisfy the

original and evolving intelligence needs. These sensors or sources of data are varied and include

multiple techniques [27]. For example, honeypots [15], malware analysis repositories such as

VirusTotal [28], and social media threat exchanges such as ThreatExchange by Meta [29].

2.2.2 Information Processing (Phase 3)

Raw collected data is converted into forms readily used by decision-makers, intelligence ana-

lysts, and other consumers, as depicted in Fig. 2 [13]. Processing and exploitation include data

classification, editing, conversion and correlation, document and media translation, and reporting

the results of these actions to analysis and production elements. Processing and exploitation may be

federated or performed by the same element that collected the data [19]. One of the most important

parts of information processing is data classification because big amounts of data can be separated

and processed independently. To classify raw collected data, several threat taxonomies have been

proposed [30, 22, 31]. These taxonomies define and classify the different ways in which adversaries

can attack a particular system. For example, the MITRE ATT&CK® framework is a taxonomy of

attacks that target Enterprise computers such as Windows and MacOS [32].

2.2.3 Cyber Threat Intelligence of Cyber-Physical Systems

CTI has become a mature and well-developed discipline in the context of enterprise IT and

commodity computing. This has resulted in a plethora of commercial CTI platforms developed

by important technology companies. These include Microsoft’s Defender Threat Intelligence [33],

IBM’s X-Force [34], Google’s Cyber Threat Intelligence [35] and Cisco’s Talos [36]. These

platforms are often backed by large-scale telemetry, and a robust ecosystem of tools for ingestion,

enrichment, and response.
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In contrast, CTI tailored for CPS is both limited in scope and fragmented across sectors. Most

existing work is narrowly focused on ICS, with Dragos being one of the main companies that

offer ICS-specific products for CTI in addition to producing threat reports and malware analyses

specific to that domain [37, 38]. Even within ICS, public CTI offerings are sparse, and lack

standardization. Beyond ICS, other critical CPS domains, such as connected and automated

vehicles (CAVs) and satellites, have received little attention in either academic or commercial CTI

efforts. This contrast between commodity computer CTI and CPS CTI highlights a critical research

gap, as CPS increasingly underpin critical infrastructure and real-world safety, the lack of tailored

CTI leaves them vulnerable to attacks that traditional IT-centric intelligence cannot address.
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CHAPTER III: THREAT TAXONOMY FOR INDUSTRIAL CONTROL SYSTEMS

Abstract

Billions of people rely on essential utility and manufacturing infrastructures such as water treat-

ment plants, energy management, and food production. Our dependence on reliable infrastructures

makes them valuable targets for cyberattacks. Among the prime targets for adversaries attacking

physical infrastructures are Programmable Logic Controllers (PLCs), because they connect the

cyber and physical worlds. In this dissertation chapter, we conduct the first comprehensive sys-

tematization of knowledge that explores the security of PLCs: we present an in-depth analysis of

PLC attacks and defenses and discover trends in the security of PLCs from the last 15 years of

research. Additionally, we identify and point out research gaps that if left ignored could lead to

new catastrophic attacks against critical infrastructures.

3.1 Introduction

Programmable Logic Controllers, or PLCs, are small rugged computers that have programmable

memory to store functions such as timers and logic gates. These functions can control physical

machines, such as water pumps or centrifuges [1]. PLCs are rather unique systems due to two main

characteristics: First, they act as a bridge that connects the cyber and physical worlds; therefore any

attack carried out on them can have an immediate effect in the real world. Second, they have opaque,

heterogeneous architectures that are different from traditional computer architectures, comprising

multiple firmware, which makes them difficult to secure [39].

Before the introduction of PLCs, physical processes were controlled by relay panels. Relays are

switched either on or off by an electric current, and thus they can be used in logic circuits. Ladder

logic was created as a way to configure relay panels to automatically launch actuation commands

based on sensor information. As industrial processes became more complex and varied, relays were

not enough to meet the new requirements. An evolution of PLCs, first based on microprocessors,

then on networks, and more recently on modern technology paradigms, such as virtualization, has

introduced multiple benefits, but at the same time increased the attack surface of these systems.
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The first PLC, the Modicon 084, was introduced in 1968 [40]. Unlike relays, PLCs could be

programmed and reprogrammed to adjust to the process requirements without any physical changes

to the control system. A flurry of programming languages emerged, extending ladder logic and

introducing new paradigms. Eventually, in 1993, the IEC 61131-3 standard unified these multiple

languages into basic standards for PLC programming languages [41].

The first PLCs communicated with the physical world as well as with other computers via

analog or serial communications. As computer networks became more reliable and available in

the IT world, Ethernet communications were introduced to PLCs. This network connectivity keeps

increasing. For example, the Siemens S7-1500 PLC includes up to 4 Ethernet ports, whereas the

legacy S7-300 needed an expansion module to support Ethernet connectivity. At the same time,

network accessibility now allows remote attackers to deploy classical network attacks against PLCs.

Nowadays, with the advent of Industry 4.0 and IIoT [42], PLCs are going through another

paradigm shift bringing even more functionalities like cloud integration, web services, and virtu-

alization. New players like CODESYS and OpenPLC have also entered the market, challenging

the long-standing practice of using proprietary hardware and proprietary software products that

dominated the PLC industry. These changes pose many open questions about the security of PLCs

to the research community.

In order to advance the security of PLCs and the systems they interact with, plenty of research

has been produced in the past decades. In particular, research output increased after the term Cyber-

Physical System (CPS) was coined in late 2006 by the NSF in the United States [19]. However, the

community still lacks an up-to-date general understanding of where the security of PLCs stands

and what directions should (or should not) be taken in the future.

To address this challenge, we introduce a comprehensive analysis of the security of PLCs by

integrating knowledge from multiple fragmented origins (scientific and grey literature), comprising

many existing attack and defense methods in the literature. In addition, we introduce a novel threat

model as well as classification and evaluation criteria for summarizing and structuring the existing

knowledge about PLC security.
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In summary, we make the following contributions:

• We provide a systematization of the literature that consists of 133 papers, which include 119

attack methods, and 70 defense methods (one paper might include one or more attack or

defense methods).

• We present a comprehensive taxonomy1 that integrates the scientific literature with the

existing ATT&CK for ICS Matrix in collaboration with MITRE ATT&CK®.

• We identify important PLC security research gaps and discuss future research directions and

recommendations.

• We provide three public tools to facilitate and foster research and collaboration on this

topic. 1) Our full systematization dataset2, which other researchers can use to replicate our

results and perform their own analyses. 2) A PLC security artifacts repository3, which acts

as a centralized database for artifacts updated by the community. 3) A reference graph4 that

enables researchers to further analyze the reviewed literature in this SoK.

3.2 Background

We now introduce some relevant background topics on PLCs that will be leveraged in future

sections.

3.2.1 PLC System Environment

PLCs [43] are an essential component of most physical critical infrastructures such as water

treatment systems and gas pipelines. PLCs are commonly found in Industrial Control Systems

and Supervisory Control and Data Acquisition (SCADA) systems. In the last few years, two

new concepts have emerged in the context of Cyber-Physical Systems: Industrial IoT (IIoT) and

Induystry 4.0. IIoT is a subset of IoT concerned with connecting industrial assets, e.g., PLCs, with
1https://github.com/efrenlopezm/ics2matrix
2https://github.com/efrenlopezm/plc-sok-dataset
3https://github.com/efrenlopezm/plcsecurityartifacts
4https://www.researchrabbitapp.com/collection/public/E6XRY0186G

12

https://github.com/efrenlopezm/ics2matrix
https://github.com/efrenlopezm/plc-sok-dataset
https://github.com/efrenlopezm/plcsecurityartifacts
https://www.researchrabbitapp.com/collection/public/E6XRY0186G


information systems and business processes. Industry 4.0, on the other hand, is a subset of IIoT

and refers to the use of Internet technologies to improve production efficiency by employing smart

services in smart factories [42]. Figure 3.12 illustrates the relationship between the above concepts.

Furthermore, IIoT and Industry 4.0 have changed PLCs in two ways: First, they have introduced

support for modern network protocols, which we discuss further in Sec. 3.2.3. Second, they have

changed the hardware and software architectures to support virtualization and compatibility. We

further discuss these topics in Sec. 3.2.4.

PLCs’ industrial environment, however, remains largely the same and typically includes the

following [4]:

Actuator. A hardware component that moves or operates a device in the physical world.

Examples of actuators include valves, motors, and piezoelectric actuators.

Sensor. A device that generates an electrical analog or digital signal that represents a physical

property of a process. Examples include temperature or magnetic field sensors.

Engineering Station. A general-purpose computer that is used to write the control logic or

ladder logic code for the PLC to execute. It is usually connected to the PLC so that the compiled

control logic program can be uploaded.

Human Machine Interface (HMI). The hardware or software used to interact with the PLC,

e.g, a physical control panel with buttons and lights or a software display.

We further discuss PLCs’ underlying architecture and environment in Appendix 3.10.3.

3.2.2 PLC Basic Components

As shown in Fig. 3.1, a typical PLC has the following basic components that are susceptible to

attacks:

Control Logic. A control logic program contains the instructions that the PLC executes to

interact with its environment. The IEC 61131-3 standard [41] specifies the syntax and semantics

of a unified suite of programming languages for PLCs. Control programs are written in one of

these supported languages, e.g., Structured Text, and then compiled into machine code or bytecode.

For instance, Siemens PLCs run proprietary MC7 bytecode [44] compiled by the SIMATIC S7

13



Figure 3.1
A Generalized PLC Architecture. Based on [1, 2].

Manager software [45].

Runtime Environment. The runtime environment executes the process control code [2] and

interacts with the I/O modules. It can be proprietary, e.g., Schneider, or open source like the

OpenPLC runtime [46].

Operating System. Most PLCs have a Real-Time Operating System (RTOS) [47]. RTOS are

operating systems that meet strict processing time requirements and support real-time applications.

Vendors support a variety of RTOS in their platforms. For example, Siemens supports the Nucleus

RTOS [48] and VxWorks [49].

Firmware. The firmware bridges the gap between the PLC hardware and software. While

simple PLCs might run applications as bare metal (without an OS) [50, 51], modern PLCs use

the firmware under an RTOS. Firmware can be upgraded via SD cards or through a network

connection [52].

CPU. The CPU interprets the input signals and executes the logic instructions saved in memory.

The CPU chassis has slots where other components may be attached, e.g., a network module. It

may also include USB ports and SD Card slots.

Memory Unit. It stores the program that the CPU will execute along with input data. The

memory unit may include different types of memory blocks, which are further discussed in Ap-

pendix 3.10.4.
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Network Module. Modern PLCs can have one or more ports to communicate with the

supervisory control network (regular computers monitoring the process) or the fieldbus (actuators

and sensors).

Physical I/O Modules. These include input modules with metal pins that receive information

(via a voltage or current analog signal) from sensors. The output modules send analog data to

actuators such as servo motors.

PLC Scan Cycle. It is the cycle in which the PLC reads the sensor inputs, executes the current

control logic program and updates the output to the actuators. It is measured in ms and should stay

constant. If its time increases, PLCs implement a watchdog timer that sends the PLC to a Fault

mode [53, 54].

3.2.3 PLC Communication Protocols

As discussed in the introduction, PLCs are becoming more connected via modern communica-

tion protocols. Many of these protocols were not designed to include strong security features [55],

allowing for the proliferation of vulnerabilities that make the PLCs running them susceptible to

attacks [56, 57]. Protocols commonly used in practice include, but are not limited to, the following:

Fieldbus. PLCs use Fieldbus [58] protocols to talk to sensors and actuators. Historically these

communications were done through serial-based interfaces or analog signals. Sample standards

include Profibus, CAN bus, Modbus, and DeviceNet. They all differ in features and implementation,

resulting in limited compatibility [59, 60].

Supervisory Network Protocols. PLCs communicate with other controllers or classical com-

puters through a variety of proprietary and standardized protocols. These protocols use the IEEE

802.3 Ethernet standard [61] in industrial environments [62]. For example, the EtherNet/IP protocol

combines IEEE 802.3 and the TCP/IP Suite [63]. Some are designed to operate on LANs (they do

not use IP addresses but only MAC addresses), such as GOOSE, while others use TCP/IP and can

be used on LANs and WANs, such as Modbus TCP.

Industry 4.0 Protocols. These protocols include support for cloud connectivity, compatibility

between devices, and security features. Examples include MQTT (Message Queuing Telemetry
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Transport) [64] and OPC-UA (Open Platform Communications-Unified Architecture) [65]. Cur-

rently, some PLC models support Industry 4.0 protocols [66], whereas older PLCs can be retrofitted

to support them [67].

3.2.4 SoftPLCs

The term SoftPLC has been used in the scientific literature since the late 1990s [68, 69, 70].

Although it has not been well defined, generally a SoftPLC is a software runtime environment that

executes PLC programs, for example, programs that follow the IEC 61131-3 standard [41]. The

runtime is portable and compatible with multiple hardware that can range from microcontrollers

to cloud servers [71]. The two major SoftPLC projects are CODESYS [72] and OpenPLC [71].

CODESYS supports approximately a thousand different device types from more than 500 manu-

facturers [73]. OpenPLC, first proposed in 2014 [74], includes a runtime and an editor, and it is

compatible with 18 platforms including Windows and Linux [71]. One of the biggest differences

between OpenPLC and CODESYS is that OpenPLC’s runtime is open source [46], unlike that of

CODESYS. For the remainder of this work, we will refer to traditional PLCs as HardPLCs, in order

to differentiate them from SoftPLCs.

3.3 Research Questions and Methodology

In this section, we first elaborate on the research questions, and we then describe the method-

ology we followed to systematize knowledge by collecting, analyzing, and evaluating works in the

literature.

3.3.1 Overview of Research Questions

RQ-1: What are the attack methods against PLCs? We aim to categorize and analyze attack

methodologies targeting PLCs introduced in the literature in the last 17 years.

• RQ-1.1: Which components of the PLC are targeted? We aim to identify what internal

components of a PLC, e.g., the CPU described in Sec. 3.2.2, are being targeted, in an effort to

identify patterns such as the components that have received the most attention in the literature.

• RQ-1.2: How difficult is it to deploy attacks? We also aim to identify the level of effort
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required by attackers to successfully carry out attacks against PLCs. In Sec. 3.4, we elaborate

on a threat model and classification criteria, including the potential attack vectors as well as

the level of access required by attackers, e.g., Internet access, needed to deploy an attack.

• RQ-1.3: What is the impact of deploying attacks? Finally, we are interested in identifying the

impact that attacks against PLCs may have if they are deployed successfully. This includes

the level of disruption achieved, e.g., modifications to control logic programs as shown in

Sec. 3.2.1.

RQ-2: What are the defense methods to protect PLCs?

In addition to attacks, we want to systematize the PLC defenses proposed in the literature in the

last 17 years.

• RQ-2.1: Which components of the PLC are protected? We want to identify which of the

components introduced in Sec. 3.2.2 are the focus of defenses to understand which of them

have received less attention and may therefore remain unprotected.

• RQ-2.2: How difficult is it to deploy defenses for PLCs? We also study the level of effort

required to deploy defense mechanisms for PLCs. As shown in Sec. 3.4.5, this includes

the organizational effort from administrators and/or operators to modify and adjust a given

PLC/ICS Environment and the performance overhead.

• RQ-2.3: Are there enough defenses addressing reported attacks for PLCs? Finally, we are

interested to know if enough defenses exist in the literature to counteract the attacks we have

identified as a part of this work. This way, we aim to identify research gaps and discuss the

directions of future work as we describe in Sec. 3.7 and Sec. 3.8.

3.3.2 Knowledge Systematization Methodology

To answer the Research Questions raised in Sec 3.3.1, we use the systematization methodology

shown in Fig. 3.2. First, we perform a systematic literature review. Second, based on the data
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Figure 3.2
Our systematization methodology. Based on [3].
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Literature focused on PLC Security per Year.

obtained in the literature review, we perform data analysis and modeling. Finally, we assess the

data.

1 Systematic Literature Review. We review both scientific and grey literature to collect PLC

attack and defense methods. We also define the final SoK scope based on the specified inclusion

criteria.

Scientific Literature Review. We consider scientific literature to mean the literature that is
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based on the scientific method that uses evidence to develop conclusions. It uses previous literature

to develop theories and hypotheses while taking care to cite the authors and tools that are used.

For the scientific literature review, we carried out the following steps: 1) Search Querying. We

used search queries based on keywords such as “plc”, “ics”, and “security”. The complete list

of keywords can be found in Appendix 3.10.1. 2) Consulting literature resources. We used these

queries to search the selected resources such as Google Scholar and the ACM Digital Library.

The complete list of consulted resources can be found in Appendix 3.10.1. 3) Applying inclusion

criteria. After collecting all these papers, we include them only if they meet the following three

criteria. A) The paper must include the term “PLC” or “Programmable Logic Controller”. B) It

proposes an attack or defense method. C) It includes an experimental evaluation of an attack or

defense with at least one PLC. 4) Applying snowballing. We applied the snowballing technique [75]

on all the papers that matched the above criteria to find papers that went unnoticed during the initial

search.

Grey Literature Review. We consider grey literature as literature with limited distribution (i.e.,

not included in academic publishing libraries). It includes unpublished reports, policy documents,

white papers, and technical reports [76]. To perform our grey literature review, we followed the

same steps used in the scientific literature review, except that in step 2) (consulting literature

resources) we instead searched in the grey literature resources listed in Appendix 3.10.1.

Final SoK Scope. As a result of the scientific and grey literature reviews we collected 133

papers with the earliest being from 2007 and the latest from 2023. Although we searched for papers

before 2007, we did not find any that met our criteria. To the best of our knowledge, and based

on our exhaustive research, there was no research on designing new attacks or defenses for PLCs

before 2007. Fig. 3.3 shows the final number of scientific and grey papers included in our selection

criteria per year of publication, depicting an overall increase in PLC security research over the

years, peaking in 2020.

2 Data Analysis and Modeling. In this phase, we first read and analyzed each paper to extract

important security-relevant information such as attack vectors, PLC models and manufacturers,

19



and PLC target component. Second, we matched each of the attack and defense methods to their

corresponding MITRE technique, subtechnique or mitigation category. The MITRE framework is

further discussed in Sec. 3.4.1. Third, we recorded this information in a spreadsheet. The result

of this data analysis and modeling was the identification of the building blocks for a first draft of

our threat model depicted in Fig. 3.4 and the classification criteria discussed in Sec. 3.4., e.g., the

access level and PLC target component.

3 Model Assessment. In this phase, we evaluate the data, threat model, and criteria developed

in 2 to produce the SoK contributions. We use these results to summarize our findings and identify

the research gaps discussed in Sec. 3.7. Finally, we evaluate the results to produce the ICS threat

taxonomy discussed in Sec. 3.4.1.

3.4 Classification and Evaluation Criteria

In this section, we present the criteria to classify and evaluate the works considered for this

SoK. These criteria and the symbols introduced alongside them will later be used in Tables 3.1 and

3.2. Our first research question RQ-1 is addressed in Sec. 3.4.2, Sec. 3.4.3, and Sec. 3.4.4. Our

second research question RQ-2 is addressed in Sec. 3.4.5, Sec. 3.4.6 , and Sec. 3.4.7.

3.4.1 ICS Threat Taxonomy

To better classify attack and defense methods in the following sections, we extended the MITRE

ATT&CK for ICS Matrix [77] and the Hybrid ATT&CK Matrix [78] to create the ICS2 Matrix, a

taxonomy of threats against PLCs and ICS. The taxonomy includes adversary tactics that describe

“what” is the adversary’s goal and attack techniques that describe “how” the adversary can complete

their goal. Additionally, it includes mitigations that prevent a technique from being successfully

executed. The ICS2 Matrix incorporates the scientific knowledge accumulated during the past 17

years of PLC security research by adding 6 new attack techniques and 5 new mitigation categories

based on the literature reviewed in this SoK. Due to space restrictions, we provide a condensed

version of our taxonomy in Fig. 3.13. The full ICS2 Matrix version is publicly available5 for the

security community to use and extend.
5https://github.com/efrenlopezm/ics2matrix
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Matrix Integration. One of the main limitations of the MITRE ATT&CK for ICS Matrix [77]

is that it does not incorporate techniques based on security research findings but instead focuses

on techniques based on real-world ICS cyberattacks. For example, the “system firmware” tech-

nique [79] includes a reference to Triton discussed in Appendix 3.10.6. However, it does not include

any references to any of the PLC Firmware research listed in Table 3.2. This was also confirmed

by MITRE during one of our communications. Our ICS2 Matrix fills this gap. To integrate our

systematization findings with the existing MITRE for ICS Matrix, we needed to add techniques not

already covered by MITRE. To develop these new techniques, we used MITRE’s official guide-

lines [8]. This document outlines the information required to create a new MITRE-style technique,

for example, a matching “tactic” and “procedure example”. In Appendix 3.10.2 we describe in

detail how we developed and included one of these techniques.

3.4.2 Attack Classification

Considering RQ-1.1, the following criteria classify attacks according to the taxonomy technique,

e.g., Adversary-in-the-Middle, the basic components that are targeted, e.g., the CPU or Memory,

and the attack vectors that can be ultimately used against a PLC.

Target PLC Component. Each attack method was classified according to the PLC Basic

Component that is the primary target, following the description previously shown in Sec. 3.2.2.

Such information was retrieved based on the descriptions explicitly provided by the paper’s authors.

Attack Category. Each attack method was sorted into one technique category, based on our

ICS2 Matrix. The technique categories allowed us to determine what kind of defenses might (or

might not) counter them.

Attack Vector. When launching an attack against a PLC, there might be one or more vectors

or paths available to the adversary to deliver the payload. The list of attack vectors we considered

are shown in Table 3.4. Most of the time the attack vector is a vulnerability in the implementation

of a network protocol, e.g., S7comm. However, there are other vectors like inserting an SD card

into the PLC chassis, for instance, the work by Garcia et al. [80].
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Figure 3.4
PLC-centered Threat Model. Based on [4].

3.4.3 Attack Complexity

Following RQ-1.2, the criteria shown next are intended to understand, qualify, and quantify

how complex it is for an attacker to carry out an attack against a target PLC.

Environment Knowledge. This criterion evaluates how much knowledge of the cyber-physical

system environment where the PLC lives, e.g., the system topology discussed in Sec. 3.2.1, is

required to launch the attack. An attack may require zero knowledge (○␣), e.g., a DoS[81] attack

targeting the PLC network module only requires an IP address and does not require any environment

knowledge. Partial knowledge (è) may require basic information only, e.g., a high-level description

of the physical process. CaFDI [82], for example, requires limited local information about the

substation configuration. Finally, extensive knowledge (○) requires detailed information about

the cyber-physical environment. For example, SABOT[83] requires the adversary to encode their

understanding of the system behavior into a specification.

Available Source Code. This criterion evaluates whether the attack source code is publicly

available (○) or not (○␣).

Access Level. We also consider the level of access an attacker needs to carry out the suggested
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attacks. Our threat model, shown in Fig. 3.4, is divided into four distinct Access Levels (ALs)

labeled from AL0 to AL3.

Adversaries might try to move through the ICS environment in order to reach the PLC and

deliver their exploit payload. Overall, our threat model helps us answer two main questions: 1)

What access level is required to attempt the attack?, and 2) What attack surfaces are available to

the adversary?

AL0: Access to PLC via the Internet ( 0 ). An adversary may be able to access a PLC through

an Internet-compatible protocol, e.g., S7comm. This is usually a private network where a remote

SCADA computer connects to a PLC via an industrial protocol such as DNP3. Attacks may also be

launched if a PLC is publicly exposed on the Internet. At first, this might seem like a ludicrous idea:

Why would anybody make a PLC publicly available over the Internet? However, a preliminary

Shodan search suggests that the number of publicly accessible PLCs (excluding Shodan-identified

honeypots) is over 6,500 as of September 20236

AL1: Access to Supervisory LAN ( 1 ). This level requires an attacker to have access to the LAN

network of the industrial process. This can be achieved if the attacker compromises workstation

computers, data historians, or similar operational computers. Some industrial protocols run only

on Ethernet and are non-routable (such as GOOSE), so an attacker targeting a vulnerable GOOSE

stack on a PLC will have to do so in the same LAN.

AL2: Access to PLC Fieldbus Network ( 2 ). As mentioned in Sec. 3.2.3, fieldbus represents

the lower level of communications between the PLC and nearby field equipment such as actuators

and sensors. An attacker can compromise any of these devices to exploit a vulnerability in the

fieldbus code implementation. The attacker can also launch Adversary-in-the-Middle attacks in

this network, as fieldbus communications are rarely authenticated in practice.

AL3: Physical Access to PLC ( 3 ). Lastly, this level assumes the adversary has bypassed

environmental and physical protection measures (e.g., locked doors) of the target. Having physical

access to the PLC may be the most difficult scenario for an adversary but can still be achieved
6https://www.shodan.io/search?query=plc+-%22792%2F71644%22.
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by malicious insiders or disgruntled employees. An attacker with physical access can use a JTAG

interface, as shown in Table 3.4.

3.4.4 Attack Impact

Following RQ-1.3, the criteria below are intended to understand and quantify the potential

impact of a successfully carried out attack, e.g., the payoff in return of the effort invested, as

discussed in Sec. 3.4.3.

Potential Damage. This criterion evaluates the immediate damage inflicted to the physical

operation of the ICS. The damage is limited ( 1 ) if the attack does not change the operation of the

process but instead aims to collect information or gain unauthorized access, for example, a password

sniffing attack [84]. The potential damage is substantial ( 2 ) if the attack can stop the industrial

process partially or completely, e.g., a DoS attack [85]. The potential damage is severe ( 3 ) if the

attack is able to insidiously control the physical process, e.g., a logic bomb or firmware modification

attack, where the attacker can launch arbitrary control commands to the system (similar to Stuxnet,

discussed in Appendix 3.10.6).

HardPLC Targets. An attack may affect a single PLC model (○␣), e.g., the Siemens SIMATIC

S7-300, or may affect multiple PLC models of the same manufacturer (è), e.g., the Rockwell’s

Allen-Bradley 1100 and 1400 models. Also, an attack may affect multiple PLC models from two or

more manufacturers (○), e.g., Siemens’ SIMATIC S7-1500 and Modicon’s M221. An attack that

is effective against various devices is an indicator of the severity of the problem, while an attack

focusing on a single device might be contained.

SoftPLC Targets. Finally, this criterion indicates if a SoftPLC was used to evaluate the

proposed attack. An attack may have been evaluated using CODESYS (C), OpenPLC (O) or no

SoftPLC at all (-) (i.e., the attack only focused on HardPLCs).

3.4.5 Defense Classification

After describing our criteria for attacks, we now focus on defenses by looking at RQ-2.1.

Defense Category. Each defense method was sorted into one mitigation category, based on

our ICS2 Matrix. The mitigation categories allowed us to determine what kind of attacks might (or
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might not) be countered.

Defense Vector. The defense vector is the path used in order to stop the attack payload from

being delivered. The available defense vectors are defined in our Threat Model for PLCs in Table

3.4. Most of the time, the attack and defense vectors will match. However, they can differ. For

example, Rajput et al. use the JTAG interface as a defense vector [86].

3.4.6 Defense Deployability

Following RQ-2.2, the following criteria evaluate how difficult it is to deploy a defense method

to protect PLCs.

PLC Overhead. This criterion quantifies the overhead that the defense method incurs on the

PLC itself, which can be either zero ( 1 ), negligible ( 2 ), or considerable ( 3 ).

Infrastructure Overhead. This criterion quantifies the cost that comes with setting up the

required infrastructure to implement a defense method. That may involve no changes ( 1 ), or it

may involve either an infrastructure change, e.g., setting up new VLANs or an additional hardware

component, e.g., bump-in-the-wire ( 2 ). Finally, a defense may involve both infrastructure changes

and hardware components ( 3 ).

Maintenance. This criterion quantifies the level of post-deployment maintenance required by a

given defense method. A defense method may require no maintenance ( 1 ), sporadic maintenance

( 2 ), or constant maintenance ( 3 ).

Source Code Availability. This criterion evaluates whether the defense source code is publicly

available (○) or not (○␣).

3.4.7 Defense Robustness

Following RQ-2.3, we also characterize how the defense mitigates attacks.

Defense Stage. Defenses can be categorized in three different stages of the security process. 1)

Prevention Defense (PR) aims to reduce the possibility of an incident before a known vulnerability

is exploited. 2) Detection Defense (DE) aims to identify and alert about a current or recent attack.

3) Recovery Defense (RE) aims to reduce the damage of an attack after it has been carried out

successfully.
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Effectiveness. The defense method’s effectiveness is indicated by its accuracy. The accuracy

values are taken from the research paper itself. If the paper did not report or specify the accuracy, it

is marked as N/S (not specified). We selected accuracy because it is the most reported metric across

the defense method papers. We recognize that this metric does not work for all defense methods,

however, it is the most frequently reported quantitative metric available in the current literature.

We further discuss this problem in Sec.3.8.

HardPLC Scope. This criterion evaluates the number of different PLC models that are protected

by the defense. The defense may protect a single PLC model (○␣), e.g., the Siemens SIMATIC

S7-300, or it may protect multiple PLC models of the same manufacturer (è), e.g., the Rockwell’s

Allen-Bradley 1100 and 1400 models. Also, a defense may protect multiple PLC models from two

or more manufacturers (○), e.g., Siemens’ SIMATIC S7-1500 and Modicon’s M221.

SoftPLC Scope. This criterion indicates if any SoftPLC was used to evaluate a defense, either

CODESYS (C), OpenPLC (O) or no SoftPLC at all (-).

3.5 Overview of Attacks

By using the systematization methodology presented in Sec. 3.3 and the criteria discussed in

Sec. 3.4, we obtained Tables 3.1, and 3.2. These tables use the PLC target component categorization

defined in Fig. 3.1.

We now illustrate examples of attacks per target component. Due to the large number of papers

in our SoK (133 papers), we cannot discuss all of them. To select the papers systematically, we

picked the two papers with the most citations from each category. We used Google Scholar to

perform the search on June 3, 2023. In the next paragraphs, we discuss the insights provided by

these highly-cited papers.

Attacks that Target the PLC Communications Module. Urbina et al. [139] introduce an

AitM attack between the PLC and the field devices (AL2). An interesting observation of that

paper is that field networks tend to follow a ring topology rather than the typical star topology

of switched Ethernet networks; therefore, an AitM attack does not need to use ARP (Address

Resolution Protocol) spoofing or similar techniques to place itself between two devices. It just

26



Attacks Defenses

Ta
rg

et
C

om
po

ne
nt

Method Category (Technique)

A
tta

ck
Ve

ct
or

Complexity Impact

Method Category (Mitigation)

D
ef

en
se

Ve
ct

or

Deployability Robustness

A
cc

es
sL

ev
el

En
v

K
no

w
le

dg
e

So
ur

ce
C

od
e

P.
D

am
ag

e
H

PL
C

Ta
rg

et
s

SP
LC

Ta
rg

et
s

PL
C

O
ve

rh
ea

d
In

fr
a

O
ve

rh
ea

d
M

ai
nt

en
an

ce
So

ur
ce

C
od

e

Eff
ec

tiv
en

es
s

D
.S

tra
te

gy
H

PL
C

Sc
op

e
SP

LC
Sc

op
e

N
et

w
or

k

Attacks on situational awareness[87]

Adversary-in-the-Middle

P 1 ○ ○␣ 2 ○␣ - Cross-layer fingerprinting[88]

Network Intrusion Pre.

D 1 1 1 ○␣ 92.8DE○␣ -
Concealment Attack[89] M 1 ○␣ ○ 2 ○␣ - DFA-based intrusion detection[90] M 1 2 1 ○␣ 99.8DE○␣ -
Controller Eavesdropping[91] P 1 ○␣ ○␣ 1 ○O Encrypted Traffic IDS[92] I 1 2 1 ○␣ N/S DE - -
Controller Packet Tampering[91] P 1 ○␣ ○␣ 3 ○O IDS for S7 networks[93] S7 1 2 1 ○␣ 99.8DE○␣ -
False Data Injection Attack[94] M 0 ○␣ ○␣ 2 ○ - Model-based anomaly detection[95] S7 1 2 1 ○␣ 96 DE○␣ -
Man in the middle[96] E 1 ○␣ ○␣ 1 ○␣ - Physical fingerprinting[88] D 1 1 1 ○␣ 92.8DE○␣ -
OPC-UA Rogue Client[97] UA 0 ○␣ ○␣ 2 ○␣ - PLC Watermarking[54] E 1 2 1 ○␣ N/S DE○ -
Replay attack[84] P 0 ○␣ ○␣ 2 ○␣ - Embedding Encryption[98]

Encrypt Network Traffic

M 1 1 1 ○␣ N/S PR - O
Replay attack[99] F 0 ○␣ ○␣ 2 ○␣ - Hash Authentication[100] F 1 1 1 ○␣ N/S PR○␣ -
SDN Enabled MitM[91] P 1 ○␣ ○␣ 1 ○O LVST (LabView SSH Tunnel)[101] E 1 2 1 ○␣ N/S PR○ -
ISO-TSAP Replay Attack[102] P 0 ○␣ ○␣ 2 è - AES-256 Implementation[103] M 1 1 1 ○ N/S PR - O
Third-party Eavesdropping[91] P 1 ○␣ ○␣ 1 ○O PLCrypto[104] E 1 1 1 ○ N/S PR○␣ -
Change the IP[105]

Denial of Service

E 0 ○␣ ○ 2 ○␣ - PLC-Sleuth[106]
Network Intrusion Pre.

S7 1 2 1 ○␣ 100 DE○␣ -
Control engine attack[107] M 0 ○␣ ○␣ 2 ○ - Semantic IDS[108] M 1 2 1 ○␣ N/S DE - -
Denial of Service Attack[81] P 0 ○␣ ○␣ 2 ○␣ - Telemetry IDS[109] M 1 2 1 ○␣ 99.5DE - -
DoS clearing Flow Table[91] P 0 ○␣ ○␣ 2 ○␣O Zeus[110]

Out-of-Band Comms Channel
E 1 2 2 ○␣ 98.9DE○␣ -

Flow Rule Blocking[91] P 0 ○␣ ○␣ 2 ○␣O Side-channel Anomaly Detection[111] E 1 1 2 ○␣ N/S DE○␣ -
UDP reflect attack[99] F 0 ○␣ ○␣ 2 ○␣ - Anomaly detection[112] N 1 2 2 ○␣ 90 DE○ -
Authentication Bypass[113]

Modify Auth. Process

E 1 ○␣ ○␣ 1 ○␣ - Arcade.PLC[114] Control Logic Verification S7 1 1 1 ○␣ N/S PR○␣ -
Cryptographic attack[99] F 1 ○␣ ○␣ 1 ○␣ - ShadowPLCs[115]

Network Intrusion Pre.

S7 2 1 2 ○␣ 97.3DE○␣ -
Replay attack[116] S7 0 ○␣ ○␣ 1 è - Snapshooter[117] S 2 2 1 ○␣ N/S DE - O
S7 Authentication Bypass[102] P 0 ○␣ ○␣ 1 è - Traffic Data Classification[118] S7 1 1 1 ○␣ 99.7PR○␣ -
Unauthorized password updating[84] S7 0 ○␣ ○␣ 1 ○␣ - vBump[119] G 1 3 2 ○ N/S PR○␣ C
SoMachine Authentication[96]

Hardcoded Credentials

M 0 ○␣ ○␣ 1 ○␣ -
Credentials from storage[96] E 0 ○␣ ○␣ 1 è -
subverting read/write-protection[96] P 0 ○␣ ○␣ 1 ○␣ -
subverting write-protection[96] P 0 ○␣ ○␣ 1 ○␣ -
Command packet flooding[120]

Network Denial of Service

E 0 ○␣ ○␣ 1 ○␣ - Modbus/TCP Firewall[121] Filter Net. Traffic M 1 2 1 ○␣ N/S PR○␣ -
Modbus Flooding Attack[122] M 0 ○␣ ○␣ 2 ○␣ -
Network Flooding Attack[85] M 0 ○␣ ○␣ 2 ○ -
UDP flooding Attack[123] M 0 ○␣ ○␣ 2 ○␣ -
Password reset attack[96]

Brute Force
M 0 ○␣ ○␣ 1 ○␣ - Shade[124]

Network Intrusion Pre.
E 2 1 1 ○ N/S DE○ -

CLIK password attack[125] M 0 ○␣ ○ 1 ○␣ - Host Anomaly Detecton[2] M 2 1 1 ○␣ N/S DE○ -
Dictionary Attack[126] B 0 ○␣ ○␣ 1 ○␣ - Argus[127] E 1 3 3 ○␣ N/S DE - -
Dump module code[105] Data from Local System E 0 ○␣ ○ 1 ○␣ - PLC-PROV[128] Validate Program Inputs N 1 2 2 ○␣ N/S DE - C
Memory Logic Attack[102] P 0 ○␣ ○ 1 ○␣ - PLCPrint[129] S7 1 1 1 ○␣ 95 DE○ -
Crash 1756-ENBT module[105] Device Restart/Shutdown E 0 ○␣ ○ 2 ○␣ - ABAC model for PLC[130] Authorization Enforcement S7 1 2 1 ○␣ N/S PR○ -
Reset 1756-ENBT module[105] E 0 ○␣ ○ 2 ○␣ - FINS detection rules[131] Network Allowlists F 1 2 1 ○␣ N/S PRè -
Leak Modbus data[132] Exfiltration Side-channel M 0 ○␣ ○␣ 1 ○␣ C
Leak OPC-UA Process Data[132] UA 0 ○␣ ○␣ 1 ○␣ C
Passive network scanner[133] Network Conn. Enumeration M 1 ○␣ ○␣ 1 ○ -
Port scanner[134] P 0 ○␣ ○ 1 ○␣ C
SOCKS Proxy[134] Connection Proxy P 0 ○␣ ○␣ 1 ○␣ C SDN-enabled automatic response[135] Network Intrusion Pre. E 1 2 1 ○ N/S DE - -
New ADMIN account[126] Exp. for Credential Access B 0 ○␣ ○␣ 1 ○␣ - WeaselBoard[136] Exploit Protection BP 3 3 3 ○␣ N/S PR○ -
Getting a Shell on the PLC[102] Exp. for Privilege Escalation P 0 ○␣ ○␣ 3 è - Memory Access Taintedness[137] Exploit Protection M - 1 1 ○␣ N/S DE - -
Password stealing[84] Network Sniffing P 0 ○␣ ○␣ 1 ○␣ - SCADA Protocol Obfuscation[138] Encrypt Net. Traffic M 1 1 1 ○␣ N/S PR○␣ -
Wireless Fieldbus MiTM[139] Wireless Sniffing E 3 ○␣ ○␣ 1 ○␣ - Secure Logging for ICS[140] Encrypt Net. Traffic S 1 3 1 ○␣ N/S PR○␣ -

O
S

3S CoDeSys Tools[141] Exp. for Privilege Escalation C 1 ○␣ ○ 2 - C
ECFI[142] Exploit Protection RT 2 2 1 ○␣ N/S PR○␣ORemote arbitrary code execution[143] P 0 ○␣ ○␣ 2 è -

Arbitrary Code Execution[144] Exp. for Client Execution R 3 ○␣ ○␣ 2 ○␣ -

R
un

tim
e Ghost in the PLC[145] Block I/O Communication R 3 è ○␣ 3 ○ C GhostBuster[146] Exploit Protection RT 2 1 1 ○␣ N/S DE○␣ C

Unauthenticated file read/write[147] Data from Local System C 1 ○␣ ○␣ 2 ○␣ C
XML bomb[147] Modify Parameter C 1 ○␣ ○␣ 2 ○␣ C

Table 3.1
A Summary of PLC Attack and Defense Methods (Network, OS and Runtime Components).
D=DNP3, G=GOOSE, S7=S7COMM, I=IEC 104, UA=OPC-UA, P=Profinet, E=EtherNet/IP, M=Modbus TCP, F=FINS,
S=Syslog, B=Beckhoff, BP=Backpane, R=SoC Register, RT=Runtime, O=OpenPLC, C=CODESYS / CODESYS upload

protocol, N=Not Specified, DE=Detection, PR=Prevention, RE=Recovery
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Advanced Stealthy Injection Attack[148]

Modify Control Logic

P 0 è ○ 3 ○␣ - Safety Verification[149]

Control Logic Verification

S7 2 2 1 ○␣ N/S DE○␣ -
CLIK[125] SM 1 ○␣ ○ 3 ○␣ - CPLCD[150] S7 1 1 1 ○␣ N/S DE○␣ -
Data Execution Attack[151] M 0 ○␣ ○ 2 ○␣ - Trusted Safety Verifier[152] N 1 2 1 ○␣ N/S DE - -
Fragmentation and Noise Padding[151] M 0 ○␣ ○ 2 ○ - Detection Manipulation[153] X 1 1 1 ○␣ N/S DE○␣ -
Ladder Logic Bomb[154] U 3 ○ ○␣ 3 ○␣ - PLCloud[155] S7 1 3 3 ○␣ N/S RE○␣ -
Time-of-Day (TOD) interrupt attack[156] S7 0 è ○␣ 3 ○␣ - PLC Guard[157] S7 1 2 2 ○␣ N/S PR○␣ -
Control logic injection attack[158]

Modify Program

X 0 è ○␣ 3 ○␣O PLC-VBS[159] Vulnerability Scanning S7 1 1 1 ○␣ N/S PR○␣ -
Dynamic Malware Payloads[160] N 1 ○␣ ○␣ 3 - - ICSPatch[161] Update Control Logic N 1 2 1 ○ 100 PRè C
Executing arbitrary ladder logic[147] N 0 ○␣ ○␣ 2 ○␣ - D-Box[162] Limit Access to MCU R. X 2 1 1 ○ N/S PR○␣ -
Immediate Failure Attack[163] T 1 è ○␣ 2 ○␣ -
Latent Failure Attack[163] T 1 ○ ○␣ 3 ○␣ -
SABOT[83] N 1 ○ ○␣ 3 - -
Ladder Logic Exfiltration[164] Exfiltration over Side-channel U 3 è ○␣ 1 ○␣ -
Leak Application data[132] N 0 ○␣ ○␣ 1 -
S7-1200 Download Attack[57] Program Download S7 0 ○␣ ○␣ 2 è -
S7-1500 Download Attack[57] S7 0 ○␣ ○␣ 2 ○␣ -
Denial of Engineering Operations[165] Adversary-in-the-Middle E 1 ○␣ ○ 2 ○␣ - Optimised Datablocks[166] Encrypt Sensitive Info. S7 2 2 1 ○␣ N/S PR○␣ -
CaFDI[82] Brute Force I/O N 2 è ○␣ 3 - -
Time-of-Day Attack[167] Change Operating Mode S7 1 è ○␣ 2 ○␣ - PLC redundancy framework[168]

Redundancy of Service
E 2 3 2 ○␣ N/S PR○␣ -

LogicLocker[169] Data Encrypted for Impact M 0 ○␣ ○␣ 2 ○ - Quad-redundant PLC[170] X 2 3 2 ○␣ N/S PR○␣ -
Denial of Decompilation Attack[171] Denial of Service S7 0 ○␣ ○␣ 2 ○ - Digital twin-based simulation[172] N 1 3 3 ○ N/S RE - -
Stable Perturbation Attack[173] ICS Sector Discovery N 1 è ○ 3 ○␣ -
Evil PLC Attack[174] Lateral Tool Transfer X 0 è ○␣ 3 ○ -
Targeted Manipulation of FB Operation[175] Manipulate I/O Image N 1 ○␣ ○␣ 3 ○ -

Fi
rm

w
ar

e

Bricking the device[147]

System Firmware

N 1 ○␣ ○␣ 2 ○␣ - AttkFinder[176]

Process Vul. Discovery

E 1 1 1 ○ 96 PR○ -
Compromise System Functions[177] SM 1 ○␣ ○␣ 3 ○␣ - VETPLC[178] E 1 1 1 ○␣ N/S PR○␣O
Decrypting Siemens Simatic firmware[102] P 1 ○␣ ○ 2 è - Similo[179] E 1 2 2 ○␣ 100 RE○ -
Firmware leakage[180] U 3 ○␣ ○␣ 1 ○␣ - Logging input simulation[181] E 1 2 1 ○␣ 99.9DE○␣ -
Firmware modification attack[50] U 3 ○␣ ○␣ 3 ○␣ - CPAC[182] Auth. Enforcement X 2 2 2 ○␣ N/S PR○␣ -
Persistent denial-of-service attack[183]

Modify Program
E 0 ○␣ ○␣ 2 ○␣ - Firmware verification tool[184] Code Signing X 1 1 1 ○␣ N/S PR○␣ -

Remotely-triggered DoS[183] E 0 ○␣ ○␣ 2 ○␣ -
Time-based denial-of-service attack[183] E 0 ○␣ ○␣ 2 ○␣ - PLCDefender[185] Attestation E 2 3 1 ○␣ 98 PR○O
Flash Update[105] Activate Firmware Update Mode E 0 ○␣ ○ 2 ○␣ -
HARVEY[80] Data from Debug Port MC 3 ○ ○␣ 3 ○␣ -
Shutting down the PLC[147] Device Restart/Shutdown N 1 ○␣ ○␣ 2 ○␣ -
Rogue Firmware Load[186] Module Firmware E 1 ○␣ ○␣ 2 ○ - SNIFU[187] Code Signing U 2 2 1 ○␣ 100 PR○␣ -

I/O

Leak I/O Process Data[132]

Exfiltration over Side-channel

N 2 ○␣ ○␣ 1 - - ORRIS[86] Antivirus/Antimalware X 2 2 1 ○ 85.6DE○␣ C
Blinkware[188] X 3 è ○␣ 1 ○␣ -
Analog Emissions attack[189] N 3 è ○␣ 1 ○␣ -
PHYCO[190] U 3 è ○␣ 1 ○␣ -
Escalated Privilege I/O Command[113] Adversary-in-the-Middle E 2 ○␣ ○␣ 2 ○␣ - Hidden Sensor Measurements[191] Network Intrusion Detection X 1 2 1 ○␣ N/S DE○␣ -
I/O Command attack[113] E 1 ○␣ ○␣ 2 ○␣ - Physics-based attack detection[192] E 1 1 1 ○␣ N/S DE○␣ -
Wireless Control[193] Spoof Reporting Message N 3 ○␣ ○␣ 2 è - Blockchain Monitoring [194] Encrypt Network Traffic E 1 3 2 ○␣ N/S PR○␣ -
Malicious Expanders[193] N 3 ○␣ ○␣ 2 ○␣ -
False sequence attack[195] Brute Force I/O N 2 ○ ○␣ 3 - - PCAT[196] Validate Program Inputs E 1 2 1 ○␣ N/S PR - -
Manipulated Variable[197] Manipulation of Control X 2 è ○␣ 2 ○␣ - Smart I/O Modules[198] M 1 2 1 ○ N/S PR - -
OPC UA Supply Chain Attack[199] Supply Chain Compromise UA 0 è ○␣ 2 ○␣ - PAtt[200] Attestation X 2 2 1 ○␣ 97 PR○␣ -
Backdoor Attack[201] Unauthorized Command Message N 2 ○␣ ○ 2 - -

M
em

or
y

Leak Crypto secrets[132] Exfiltration over Side-channel N 1 ○␣ ○␣ 1 - -
WaterLeakage[202] S7 0 ○␣ ○␣ 1 ○␣ -
PLC-Blaster[203] Change Operating Mode S7 0 ○␣ ○␣ 2 ○␣ - Mitigate Malicious Disruption[204]

Redundancy of Service
N 2 1 1 ○␣ N/S DE - O

Clear PLC memory[84] Data Destruction P 0 ○␣ ○␣ 2 ○␣ - CPS Twinning[205] M 1 3 3 ○ N/S RE○␣ -
ICS-BROCK[206] Data Encrypted for Impact U 3 ○␣ ○␣ 2 ○␣ - Armor PLC[207] N 1 3 1 ○␣ N/S DE - O
Memory Dump[177] Data from Debug Port SM 1 ○␣ ○␣ 1 ○␣ -
Exfiltrate FB Variables[175] Exfiltration over ICS Protocol P 0 ○␣ ○␣ 1 è -
Storage Based Covert Channel[175] Fallback Channels P 0 ○␣ ○␣ 1 è -
DB content manipulation[208] Modify Parameter S7 0 è ○␣ 2 ○␣ -
ROP Attack[209] Process Injection M 0 ○␣ ○␣ 2 ○␣ -
False Command Injection Attack[210] Unauthorized Command Message M 0 ○␣ ○␣ 2 ○␣O

C
PU

Forcing a CPU Stop[105]
Device Restart/Shutdown

E 0 ○␣ ○ 2 ○␣ - WeaselBoard[136] Exploit Protection BP 3 3 3 ○␣ N/S PR○ -
Crash CPU[105] E 0 ○␣ ○ 2 ○␣ - C2[211] N 2 2 1 ○␣ N/S PR○␣ -
CPU Stop and Start Attack[102] P 0 ○␣ ○ 2 è -
S7-1200 Start/Stop Attack[57] Change Operating Mode S7 0 ○␣ ○␣ 2 è -
S7-1500 Start/Stop Attack[57] S7 0 ○␣ ○␣ 2 ○␣ -
ASIC Reverse Engineering Supply Chain Compromise X 3 ○␣ ○␣ 3 ○␣ -

Table 3.2
A Summary of PLC Attack and Defense Methods (Control Logic, Firmware, I/O, Memory and

CPU Components).
S7=S7COMM, UA=OPC-UA, P=Profinet, E=EtherNet/IP, M=Modbus TCP, T=TriStation, SM=SoMachine, U=USB Port,

MC=Memory Card, X=Others, O=OpenPLC, C=CODESYS, N=Not Specified, DE=Detection, PR=Prevention, RE=Recovery
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needs to inject the attack between the two attacked devices. An AitM attacker can then send false

sensor readings to the PLC or false control commands to actuators.

Wardak et al. [84] introduce another network attack, which focuses on password sniffing on

the network interface between a workstation and the PLC (AL1) in Fig. 3.4. The authors show

that several of the connections between the workstations and the PLCs are not encrypted (or

authenticated). Consequently, passwords can be sniffed and then used to gain access to protected

actions in the PLC (e.g., the attacker can send start and stop commands to the PLC).

Attacks that Target the Control Logic. Two of the most important challenges for modifying

the control logic of a PLC are 1) how to infect the PLC without being detected and 2) how to

hide the infection from the engineering workstation. To address challenge 1, Yoo and Ahmed [151]

propose two control logic infection attacks that can bypass network intrusion detection systems.

In the first attack, they bypass intrusion detection systems that look for transfers of control logic

(compile code) by injecting control code in data blocks (used for the transfer of data such as

counters) and then modifying the execution pointer to execute code in data blocks. The second

attack uses fragmentation and noise to further obfuscate these control logic transfers to the PLC.

Kalle et al. [125] target both challenges (infection and stealthiness). They consider a different

problem in code injection, where they assume they have a binary they want to modify. They then

develop a decompiler transforming low-level control logic to a high-level instruction list to help

them inject the malicious code before recompiling it into a binary that can be uploaded to the

vulnerable PLC. They also develop a virtual PLC that interfaces with the engineering workstation

(via an AiTM attack); this virtual PLC then sends previously captured network traffic of the original

uninfected control logic back to the workstation.

Attacks that Target the PLC CPU. As discussed in Appendix 3.10.5, PLCs generally have

three CPU operating modes: “STOP,” “RUN,” and “PROGRAM.” Attacks targeting the PLC CPU

focus on disabling the CPU remotely (AL3 or AL2) with STOP commands. One of the earliest

examples of these attacks launched against Siemens PLCs by impersonating the workstation is the

work of Beresford [102]. While Siemens released cryptographic protections for these connections
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that would prevent these attacks, more recent work reverse-engineered the cryptographic protocol.

Biham et al. [57] were able to create a rogue engineering station that could remotely start or stop

these newer PLCs by compromising a vulnerable key exchange protocol.

Passwords can protect CPU modes of operation, but a compromised password can still enable

remote attacks. Higher-end PLCs protect their CPU modes with physical methods, such as using a

physical switch or a physical key. These methods are further discussed in Appendix 3.10.5.

Attacks that Target the PLC Firmware. Firmware modification is one of the most powerful

attacks in any platform, as the attacker can control access to the input and output modules of

the PLC while remaining undetected. Basnight et al. [50] pioneered methods on PLC firmware

reverse-engineering and how to develop modified firmware as a proof of concept.

The most cited firmware attack paper in our study is Harvey [80]. The authors extracted firmware

images from the update packages of the PLC vendor’s website and the PLC memory through the

JTAG interface of the PLC processor. Then they identified the subroutines that allowed them to

modify the inputs and outputs for the PLC. To upload the firmware, they rely on vulnerabilities to

protect remote firmware update functions (AL0, AL1 or AL2 in Fig. 3.4) or directly through the

JTAG interface (AL3 in Fig. 3.4).

Attacks that Target the PLC I/O. The two most cited papers targeting the inputs and outputs

of the PLC focus on how to use input or output physical signals as covert channels to exchange

information. For example, PHYCO [190] proposes a method where two compromised PLCs can talk

to each other, even when a firewall exists between them. One PLC can send an output to increase

power generation, and the other PLC can read the increased generation as a bit of information.

Adversaries can also use the PLC I/O to exfiltrate data. Krishnamurthy et al. [189] illustrate how

a PLC sending control commands to a motor can leak information about the status of a chemical

plant.

Attacks that Target the PLC Runtime. An illustrative example of runtime attacks is provided

by Abbasi et al. [145], by introducing Pin Control Attacks. This attack involves tampering with the

SoC configuration within the PLCs, aiming to disrupt the communication between the PLC runtime
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and the hardware peripherals. By implementing this attack, the adversary severs the connection

between the runtime software and the physical world, allowing them to manipulate the control data

within the actual physical process.

Runtime attacks can also target the availability of the system; for example, Gjendemsjø et

al. [147] proposed an XML Bomb Attack that causes the PLC runtime to crash by modifying an

XML file.

Attacks that Target the PLC Operating System. There are not a lot of papers focusing on

attacking the OS of PLCs. In their comprehensive study of the attack surface of a PLC, Abbasi

et al. [144] touch upon an intriguing aspect of PLC security: the vulnerability of the Siemens

Adonis Real-Time Operating System. Although their primary focus lies on the bootloader security

of Siemens PLCs, they also explore security weaknesses inherent in the Adonis RTOS.

Attacks that Target the PLC Memory. Some network or control logic attacks target the

memory of the PLC as part of their infection chain by modifying memory blocks or by getting

memory dumps. The most cited efforts focused on developing worms stored in memory [203, 202].

3.6 Overview of Defenses

Defenses Focusing on Network Inspection. Since most of the attacks in the literature focus

on network exploits, it is natural to expect several defenses in the network as well. Some of the first

and most popular network intrusion detection systems proposed for industrial networks model the

highly-periodic network traffic as a deterministic finite automaton (DFA) and propose to raise alerts

when the network traffic does not follow the learned DFA [93]. Other approaches for protecting

the networks of PLCs include adding cryptographic protections and machine learning for anomaly

detection and prevention [98].

Control Logic Defenses. Ensuring that the control program running on the PLC is verified and

correct is an old area of research, as it is not necessarily related to security but focuses on providing

safety guarantees for the operation of a process [114]. This area has received renewed attention

in the security community. An example of this line of research is illustrated by McLaughlin et

al. [152], which proposed a Trusted Safety Verifier approach that verifies the control logic code
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through a bump-in-the-wire before it is executed by the PLC.

CPU Defenses. One way to detect attacks against the CPU module is to monitor all com-

munications being exchanged between the modules of a PLC. WeaselBoard [136] is a backplane

analysis system that forwards all inter-module traffic to an analysis system to detect a variety of

attacks. This approach is more general than just detecting CPU attacks, but because it captures

information directly from the CPU, we think it fits better in this category. Other papers on CPU

defenses focus on resiliency. For example, Luo et al. [170] proposed Quad-Redundand PLC, a

redundancy framework to provide resiliency after one CPU is attacked, aiming for a second CPU

to keep the system running.

Firmware Modification Defenses. Bump-in-the-wire defenses are general mechanisms where

an extra device is placed between the sender and the receiver. This device checks that the data or

code sent to the receiver is correct. Some of the more popular firmware defenses are based on this

architecture, where the proxy device is used to inspect firmware updates before they are installed

in the PLC [187, 184].

I/O Defenses. The two most-cited defenses against the inputs and outputs of the PLC include

a defense strategy [192] and a prevention mechanism [211]. The work of Urbina et al. [192]

focuses on using physical models of the process under control to detect inconsistencies between

the inputs and outputs. On the other hand, 𝐶2 [211] focuses on preventing malicious outputs from

a compromised PLC from reaching actuators. 𝐶2 proposes a way to express and enforce security

policies, and it also denies actions that violate the policy.

Runtime Defenses. ECFI [142] is a control-flow integrity monitoring runtime protection

for real-time PLCs. Fundamentally, ECFI achieves this by segregating control-flow verification

of the PLC runtime software from control-flow tracing, ensuring the preservation of real-time

requirements crucial for PLC operations. Distinguishing itself from other control-flow monitoring

systems, ECFI refrains from terminating the runtime process; instead, it promptly notifies the op-

erator of any detected control-flow violations. This approach strikes a balance between protection

and timeliness, allowing for effective threat detection without disrupting the overall system func-
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tionality. On the other hand, Ghostbuster [146] serves as a defense mechanism designed to identify

Pin Control Attacks targeting PLC runtimes [145]. Implemented as a kernel driver, Ghostbuster

operates in two distinct modes to ensure comprehensive protection. In Kernel mode, it actively

detects alterations made to the SoC debug registers, enabling the detection of elusive ”Ghost in

the PLCs” I/O intercepts. On the other hand, to thwart user-mode pin control attacks, Ghostbuster

employs a distinct strategy. It diligently monitors the SoC configuration of the Pin Control Sub-

system, constantly searching for configuration violations that could sever the connection between

the PLC runtime and the physical world. By adopting these proactive measures, Ghostbuster effec-

tively fortifies PLC systems against Pin Control Attacks and reinforces the security of the runtime

environment.

OS Defenses. Another IT protection being considered is malware detection at the OS level [86],

which requires new hardware (Power Debug PRO) and could be circumvented using data hooking

or gaining kernel privilege level.

Memory Defenses. Applying protections like ASLR is now common in most IT infrastructure,

but similar approaches are being explored for PLCs. For example, Robles-Durazno et al. [166]

proposed Optimized Datablocks, an approach in which the allocation of the datablock data is

randomized such that the attacker does not know its exact location, making attacks more difficult

as with other moving target defenses.

3.7 Research Gaps

We now focus on identifying relevant insights, gaps, and recommendations for future work by

analyzing the data from Tables 3.1 and 3.2.

Most of the Attacks Require Zero Environment Knowledge. We found that 82% (97/119)

of the attacks that may cause either limited ( 1 ) (36% (35/97)), substantial ( 2 ) (56% (54/97)), or

severe ( 3 ) (8% (8/97)) damage require zero knowledge (○␣) of the environment in which the PLC

lives, following the description presented in Sec. 3.2.1 and the criteria discussed in Sec. 3.4.3. This

may imply that adversaries can potentially launch non-trivial attacks against power grids, chemical

plants, water treatment plants, etc. by targeting PLCs without having to invest time performing
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The 15 Most Common PLC Models.

reconnaissance or learning the specifics of actuators, sensors, etc. Moreover, we were able to

identify that only a few defense methods, e.g., Formby et al. [2] and Bellettini et al. [138], make

use of such important environmental information. We therefore recommend that future defenses

make use of environment knowledge in their strategy to increase their effectiveness.

The Security of Important PLC Brands Has Not Been Explored. We found that the security

of some important PLC platforms widely used in practice has been ignored. As shown in Fig. 3.5,

the market share percentage of important PLC manufacturers such as Mitsubishi, Omron, ABB,

and GE is considerably higher than their research share, e.g., the number of papers explicitly using

them for attack/defense evaluation purposes. For example, even though Mitsubishi PLCs account

for 14% of the global market, they contribute to 0% of the research share in our review (they only
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Defense vs Attack Methods per Target Component.

appear once in our Grey literature survey [212]).

This means that there are potentially thousands of PLCs deployed in the world whose security

has not been explored or may not have been adequately understood. We therefore recommend

future lines of work specifically addressing these devices, exploring the effectiveness of existing

attacks and defenses as discussed in this work, as well as the introduction of newer security methods

tailored for them.

Lack of Defenses at the Recovery Stage. We found that most defense methods are designed

for the Prevention (PR) and Detection (DE) stages discussed in Sec. 3.4.7, 47% (33/70) and 47%

(33/70) out of 70 respectively, whereas the Recovery (RE) stage accounts for only 6% (4/70). This

means that in the event of a successful attack there are limited options to recover and bring the PLC

back to operation.

Most Attacks and Defenses are Evaluated on a Small Subset of PLCs. Our results show

that the top 5 most common PLC models in our literature review (as shown in Fig. 3.6) account for

40% of all studies. This may result in a narrow understanding of PLC security that excludes the

rest of the PLC models in the market. Additionally, we found that 80% (95/119) of attack methods

and 81% (57/70) of defense methods were evaluated using a single HardPLC model (○␣). This

means that most attack and defense methods are shown to work with a single HardPLC model,

making it unclear whether or not the defense method can be generalized to other PLC models and
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Figure 3.8
Attack Methods according to their Tactic.

manufacturers. Therefore, we recommend that future research include an evaluation of multiple

PLCs.

Important Tactics have Little to No Research. Our ICS2 Matrix includes 14 Tactics. However,

as Fig. 3.8 shows, most of the attack methods focus on Impair Process Control, Inhibit Response

Function, Exfiltration, Collection, and Persistence. On the other hand, important Tactics like

Command and Control, Lateral Movement, Evasion, Credential Access, and Initial Access have

not been investigated.

One reason that might explain why these tactics have not been explored in previous research

is that they are too specific or custom-fit. For example, the Command and Control tactic includes

techniques such as Commonly Used Port and Standard Application Layer Protocol, which depend

on specific network protocols and ports. This specific focus on network ports might limit the scope

of research that can be carried out for this tactic.

Most Mitigation Strategies have Little to No Research. We found defense methods that match

17 Mitigation categories. However, as shown in Fig.3.9, the majority of these defenses fall into the

Network Intrusion Prevention, Encrypt Network Traffic and Control Logic Verification categories.

The remaining 14 Mitigation categories have only 4 or fewer defenses. These include important cat-
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Defense Methods per Mitigation Category.

egories like Antivirus/Antimalware, Vulnerability Scanning, and Attestation, which are especially

important given the rise of ICS malware such as the ones described in Appendix 3.10.6.

Weaknesses of State-of-the-Art Defenses Based on the results shown in Tables 3.1 and 3.2,

we identified the following three major weaknesses when it comes to defending PLCs: 1) No

ransomware detection. Even though researchers have shown that ransomware attacks against PLCs

are possible [169, 206] and there are multiple documented ransomware attacks against ICS, there

is no available research focused on how to detect and stop PLC ransomware. To address this

research gap, future research should introduce new defense methods that take advantage of state-of-

the-art malware and ransomware detection techniques such as sandbox detection [213] and static

and dynamic analysis [214]. 2) No web-based malware detection. Research shows that attackers

target PLCs’ web interfaces[215, 15] and that it is possible to compromise PLCs via their web

applications [216]. However, there is no available research focused on how to detect and stop

malware targeting PLCs’ web interfaces. 3) No Exfiltration over Covert Channel Detection. This

is one of the new techniques that we introduced in our ICS2 Matrix (Fig. 3.13), which includes

methods such as PHYCO [190]. Introducing this technique lays the groundwork for identifying the
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need for mitigations against such techniques. Currently, there is no known mitigation for this type

of attack. Indeed, in 2014 Garcia et al. wrote: “There has been no detection solution capable

of identifying such hidden communications in the physical power system,” [190] which still holds

true.

3.8 Discussion

We now discuss research challenges that have not attracted enough attention and may become

relevant as PLCs evolve.

Reproducible Research. Based on our analysis and the results presented in Tables 3.1 and 3.2,

few defense and attack methods provide publicly available research artifacts. During our literature

review, we searched for research artifacts for each paper. We searched the paper itself on Google

and the author’s website. Using this method, we were able to find the source code for 19 papers

(only 16%). This limits the reproducibility of attacks and defenses. In an attempt to find the

artifacts for papers without openly available code, we contacted 91 authors via email requesting

their research artifacts, and we received 16 responses (17.6%). Ultimately only 3 shared a research

artifact. The other 13 did not share the source code for the following reasons: 1) The project was

completed long ago or the first author moved on to a different institution (30%). 2) There were

funding or distribution restrictions (25%). 3) The authors were working on it and will publish it

later (15%). 4) There were no plans to release it to the public (30%). 16% is a low number of

papers with artifacts, and this does not even consider if the source code has good documentation or

if these public resources are easy to run. Therefore, we encourage researchers to release their PLC

security artifacts so that research can be replicated and built upon and to leverage our PLC security

artifacts repository discussed in Sec. 3.1 to disseminate their artifacts. We acknowledge that given

the criticality of PLCs it is not always possible to release artifacts at the time of publication if at

all. For example, the US’ Cybersecurity & Infrastructure Security Agency (CISA) recommends

researchers “provide us a reasonable amount of time to resolve the issue before you disclose it

publicly [217].”

A second challenge that compounds the problem of lack of reproducible research is the absence
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Papers evaluated using SoftPLCs vs HardPLCs.

of standardized performance metrics. Based on the results in Tables 3.1 and 3.2, few defense

methods reported detailed PLC overhead or effectiveness metrics as described in Sec. 3.4.7. This

makes comparing and building upon previous research almost impossible. To overcome this

challenge we recommend that future defense methods report detailed quantifiable metrics. First,

papers that propose methods such as Intrusion Detection Systems (IDS) should report a complete and

detailed confusion matrix. The work by Salehi et al. [185] provides an excellent example. Second,

future research on defense methods should report detailed and quantifiable benchmark metrics,

e.g., memory overhead. Existing benchmarks such as BenchmarkIoT [218] can be customized for

PLCs to overcome this challenge.

Transition from HardPLCs to SoftPLCs. As discussed in the introduction, PLCs are going

through a paradigm shift with support for new protocols and new functionalities. Support for

SoftPLCs appears to be increasing. While SoftPLCs currently have a minimal market share, large

manufacturers like Siemens and Rockwell are preparing hardware-agnostic products[219]. This

paradigm shift has also reached the scientific community. As shown in Fig. 3.10, PLC security

research has diverged into two different strands: evaluations that use HardPLCs and evaluations

that use SoftPLCs.

Considering this trend, future research should be aimed at addressing the following challenges:

1) Developing transitional defense methods that secure both HardPLCs and SoftPLCs. For example,

developing bump-in-the-wire solutions that are compatible with HardPLCs and SoftPLCs. This may
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involve evaluating research on both HardPLCs and SoftPLCs. 2) Investigating defense mechanisms

available for SoftPLCs that were previously unavailable for HardPLCs. For example, HardPLCs’

proprietary nature limited their access control and encryption capabilities by incorporating weak

encryption protocols. SoftPLCs’ less opaque architecture provides the opportunity to solve this

problem. 3) Investigating both attack and defense methods that are possible only with SoftPLCs.

For example, CODESYS’ SoftPLCs can be connected to the cloud [220], which opens new ways

to collect data that can be used to train machine learning-based Intrusion Detection Systems.

3.9 Related Work

SoKs on PLCs. To the best of our knowledge, the work by Sun et al. [221] is the only SoK

focused on attacks and defenses on the control logic of PLCs. However, our work is different in

two ways. First, Sun et al. focuses on PLCs’ control logic, while we take a more comprehensive

approach that includes 8 additional PLC components. Second, our SoK includes papers with

practical evaluations, while Sun et al. focus on formal or theoretical research.

PLC Honeypots. While previous work includes approaches for PLC honeypots [222, 15], their

focus is intelligence gathering rather than attacking PLCs.

Fuzzing and Binary Reverse Engineering. There is also noticeable research on fuzzing and

reverse engineering for ICS and PLCs in the literature [223, 224, 225, 226, 227]. Our focus,

however, is not on software analysis or patching but on outlining specific attacks.

Embedded Controllers. While they have received most of the attention in the security

literature, PLCs are not the only embedded equipment in ICS. Remote Terminal Units (RTUs) and

Intelligent Electronic Devices (IEDs) are even more prevalent in energy transmission systems and

substation automation [228, 229, 230]. We need further research into the security of these other

embedded controllers.

3.10 Chapter Conclusion

In this dissertation chapter, we provide a novel threat taxonomy for Industrial Control Systems

(ICS). We also pointed out research gaps that should be tackled in the future so that the security of

PLCs can be better understood, thus helping avoid future attacks against ICS and PLCs. We hope this
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systematization is useful to newcomers to the field as well as experienced PLC researchers looking

to contextualize their work. As a part of Future Work, we are developing an experimental testbed

as discussed in Sec. 3.2.1. This way, different attack and defense strategies can be replicated to

provide experimental evidence on their effectiveness, deployability, and robustness, thus ultimately

complementing the results provided in this work.

Appendix A:

3.10.1 Scientific and Grey Literature Resources

The seven digital libraries queried during our scientific literature review are as follows: ACM

Digital Library7, arXiv8, dblp9, Google Scholar10, IEEExplore11, USENIX Papers Search12, and

NDSS Symposium Search13.

The three main sources we queried during our grey literature review are as follows: Digital

Bond Archives14, InfoconDB15, and Google16.

Search keywords.

TC-1: "plc", "programmable␣logic␣controller", "scada", "cps",

TC-2: "cyber-physical␣system", "cyber␣physical␣system", "iiot",

TC-3: "industrial␣internet␣of␣things", "industry␣4.0",

TC-4: "industrial␣control␣system", "ics", "embedded␣system",

TC-5: "attack", "threat", "vulnerability", "defense"

3.10.2 MITRE Technique and Sub-Technique Model Example

As an example of how our ICS2 Matrix can be used to categorize ICS-specific attacks proposed

by researchers, we will have a look at the work by Krishnamurthy et al. [189] They proposed an attack
7https://dl.acm.org/
8https://arxiv.org/
9https://dblp.org/

10https://scholar.google.com/
11https://ieeexplore.ieee.org/Xplore/home.jsp
12https://www.usenix.org/publications/proceedings/
13https://www.ndss-symposium.org/
14https://dale-peterson.com/digital-bond-archives/
15https://infocondb.org/
16https://www.google.com/

41

https://dl.acm.org/
https://arxiv.org/
https://dblp.org/
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.usenix.org/publications/proceedings/
https://www.ndss-symposium.org/
https://dale-peterson.com/digital-bond-archives/
https://infocondb.org/
https://www.google.com/


strategy where a malware-infected PLC can exploit the acoustic emissions generated by a motor

controlling a valve in a feedback control loop within an ICS. This covert acoustic channel enables

the malware to secretly transmit sensitive information, such as proprietary controller parameters

and system passwords, to a remote receiver. This attack does not disrupt the stability, performance,

or signal characteristics of the closed-loop process, making it stealthy and effective at exfiltrating

data from the compromised ICS.

We categorized this attack under the Exfiltration tactic but could not find a fitting technique. Thus,

we propose the addition of the technique Exfiltration over a Covert Channel. This way of data

exfiltration bypasses the techniques Filter network Traffic and Data Loss Prevention, as covert

channels utilize unintended means of communication by definition. To mitigate covert channels

requiring the propagation of wireless signals, Minimize Wireless Signal Propagation represents a

defense, but due to the different forms that covert channels can take, complete mitigation proves

difficult, which puts this technique in the category Mitigation Limited or Not Effective. Table 3.3

shows the new technique definition motivated by the example above. This technique definition

follows MITRE’s official guidelines [8].

3.10.3 PLCs’ Larger Context and Underlying Architecture

In this Appendix, we expand on the environment in which PLCs operate. Specifically, we use

the Purdue model [231] to describe the network architecture of an ICS process and where PLCs fit

in.

As we discuss in Sec. 3.1, PLCs control physical machines or actuators, such as pumps.

However, these actuators do not exist in a vacuum. They are one component of many that work

together to complete a larger industrial process, for example, a water treatment process. Figure 3.11

depicts a sample of a water treatment process ICS using the Purdue Model.

3.10.4 PLC Memory Blocks

PLCs have specialized memory blocks that store different types of data. These blocks are made

available to applications that perform operations like program upload and download [1] and can be

classified as:
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Data Item
Name Exfiltration over Covert Channel
Tactic Exfiltration
Data
Sources
Description Adversaries may attempt to exfiltrate data via a covert channel such as analog emissions of

physical instrumentation. For example, actuators, sensors, and mechanical structures. These
analog emissions can be acoustic or electromagnetic. In some circumstances, the adversary
needs to have physical access to the ICS to measure the analog signal using an antenna, for
example. The physical medium or device could be used as the final exfiltration point or to hop
between otherwise disconnected systems.

Asset Field Controller/RTU/PLC/IED
Defense
Bypassed

Data Loss Prevention, Filter Network Traffic

Contributor Efrén López Morales
Procedure
Example

Krishnamurthy, Prashanth, et al. ”Process-aware covert channels using physical instrumentation
in cyber-physical systems.” [189] IEEE Transactions on Information Forensics and Security
13.11 (2018): 2761-2771.

Mitigation Minimize Wireless Signal Propagation, Mitigation Limited or Not Effective
Detection

Table 3.3
Proposed technique definition of Exfiltration over Covert Channel according to MITRE

ATT&CK: Design and Philosophy [8]

Data Blocks (DB). These blocks are used to store data that will later be used by a program.

Different data types can be stored (e.g., Boolean, byte, integer) [232].

System Data Blocks (SDB). These blocks contain PLC configuration information [10, 232],

listing PLC model, firmware version, IP address, and information about the attached add-ons (e.g.,

communication processors, frequency converters). SDBs are automatically created and compiled

by the PLC and cannot be modified by the user.

Organization Blocks (OB). These blocks are the interfaces between the operating system

and the user program [116, 233]. OBs execute when events occur (e.g., at CPU startup, clocked

executions, errors, hardware interrupts). Several other OBs serve specific roles.

Function Blocks (FB). Finally, FBs hold standard executable code blocks, which are written

in any of the IEC 61131 standard programming languages [10, 232].
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Figure 3.11
Example of an ICS process with PLCs in Level 1: Controller Network as defined by the Purdue
Model. Based on [5, 6].

3.10.5 PLC Built-in Security Features

Access Control. Most PLCs include built-in access control features. For example, Siemens

and Allen-Bradley PLCs can be configured with a password that restricts changes to the CPU

configuration[234, 235]. However, these built-in features have been shown to be ineffective[84].

Encryption. Some PLCs also include encryption features for memory blocks, for example,

Siemens allows the encryption of specific memory blocks [236]. Another encryption function-

ality involves the use of hashing to detect changes. Some Rockwell and Siemens PLCs support

hashing [237]. Additionally, some of the PLC Industrial Ethernet protocols incorporate built-in

encryption. However, like the access control features, they have been shown to be vulnerable [116].

Operational Modes. PLCs have different operational modes intended for different scenarios.

44



Figure 3.12
Relationship between Critical Infrastructure (CI), Operational Technology (OT), Cyber-Physical
Systems (CPS), Industrial Control Systems (ICS), Supervisory Control and Data Acquisition
(SCADA), and PLCs. Based on [7].

For example, to modify the control logic program of a production PLC, it is necessary to change

or switch the PLC operational mode from Run to Stop and then to Program [238]. In practice,

there exist two ways to switch the operational mode of a PLC: either to use the PLC management

software, e.g., SIMATIC STEP 7 for Siemens PLCs, or to manually switch the operational mode

using a physical key inserted in the PLC chassis, which overrides the software option just described.

Overall, the most common operational modes are:

• Run Mode. This mode is used to execute the control logic program of the PLC. Input from sensor

devices is monitored, and output is sent to actuator devices. Ideally, a production PLC should

always be set to Run [238, 239].

• Stop Mode. In this mode, the PLC stops reading inputs and stops the control logic program

execution. Typically, a PLC must be switched to Stop before it can be re-configured by means of

the Program mode [240, 238].

• Program Mode. In this mode, the PLC control logic program is loaded, modified, or deleted.

While in this mode, all outputs from the PLC are stopped [238, 239].

Disabling Unused Protocols. Some PLCs have the option to disable network services to reduce
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unnecessary attack surfaces. For example, Siemens PLCs allow for the integrated web server to be

disabled [241], preventing the exploitation of web server-based vulnerabilities [242, 102].

Monitoring HMI Data. HMIs are useful to visualize trends about the performance of PLCs,

as they can plot the PLC Scan Cycle, the uptime, and shut down and restarts, which can be helpful

to detect an ongoing attack [237].

Access Level Vector
AL3: Physical • JTAG Port

• USB Port
• Key Switch
• Backplane
• Memory Card

AL2: Fieldbus • PROFIBUS
• DeviceNet
• RS-232 Serial
• EtherNet/IP

AL1: LAN • GOOSE
• Workstation
• SoMachine (Schneider)
• TriStation (Schneider)
• LS Proprietary (LS Electric)

AL0: Internet • Modbus TCP
• DNP3
• IEC 104
• OPC UA
• EtherNet/IP
• S7comm
• Webserver (HTTP/HTTPS)
• SNMP

Table 3.4
Attack Vectors per Access Level.

3.10.6 Real-World PLC Attacks

We summarize real-world attacks that showcase the pressing need to improve the security of

PLCs.

Stuxnet. Stuxnet is the first-ever documented malware for PLCs. At the time, it set itself apart

from previous malware by showing a high level of sophistication, a deep understanding of industrial

processes, and the use of four zero-day exploits [10]. After compromising a computer with the

software for programming PLCs, the malware uploaded its malicious control program to the target
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PLCs. In particular, the attack targeted Siemens 315 and 417 and made them damage centrifuges

while reporting that everything was normal [243].

Triton. This malware, also known as TRISIS and HatMan [21, 244] was identified in 2017

after a petrochemical facility in Saudi Arabia was shut down. After compromising an engineering

workstation, Triton was able to launch a dropper (trilog.exe) to deliver backdoor files to Safety

Instrumented System (SIS) PLC. The first backdoor file was a 0-day exploit that allowed the

attackers to inject the second file into the PLC’s memory. With a program in the memory of the

PLC, the attackers could have control of the device. The attackers were unable to take full control

of the system because an error in the PLC caused a system shutdown.

Pipedream Toolkit. At the time of writing, Pipedream (also known as Incontroller) is the latest

documented malware that specifically targets PLCs [245]. This is not a single purpose malware but

a modular framework that includes multiple exploits that target different PLCs. Once the attackers

compromise a computer in the control network, Pipedream can be used to scan and compromise

Scheider Electric PLCs, OMROM Sysmac NEX PLCs, and Open Platform Communications Uni-

fied Architecture (OPC UA) servers. Pipedream is believed to have been developed by a nation

state [246].

Crashoverride. Also known as Industroyer [247, 230], Crashoverride is believed to have

caused the power outage in Ukraine’s capital in December of 2016 [248]. A sophisticated malware

designed to disrupt ICS networks used in electrical substations, it targeted the Open Platform

Communications Data Access protocol or OPC-DA for short, which defines how data can be

transferred to and from PLCs.

3.10.7 Excerpt of the ICS2 Matrix
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Figure 3.13
Condensed version of the ICS2 Matrix. It includes nodes from the MITRE ATT&CK for ICS

Matrix (Blue), the MITRE ATT&CK Enterprise (Red) and our additions (Yellow).
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CHAPTER IV: SATELLITE HONEYPOT

Abstract

Satellites are the backbone of several mission-critical services, such as GPS that enable our

modern society to function. For many years, satellites were assumed to be secure because of their

indecipherable architectures and the reliance on security by obscurity. However, technological

advancements have made these assumptions obsolete, paving the way for potential attacks, and

sparking a renewed interest in satellite security. Unfortunately, to this day, there is no efficient

way to collect data on adversarial techniques for satellites, which severely hurts the generation of

security intelligence.

In this dissertation chapter, we present HoneySat, the first high-interaction satellite honeypot

framework, which is fully capable of convincingly simulating a real-world CubeSat, a type of Small

Satellite (SmallSat) widely used in practice. To provide evidence of the effectiveness of HoneySat,

we surveyed experienced SmallSat operators currently in charge of active in-orbit satellite missions.

Results revealed that the majority of satellite operators (71.4%) agreed that HoneySat provides

realistic and engaging simulations of CubeSat missions. Further experimental evaluations also

showed that HoneySat provides adversaries with extensive interaction opportunities by supporting

the majority of adversarial techniques (86.8%) and tactics (100%) that target satellites. Additionally,

we also obtained a series of real interactions from actual adversaries by deploying HoneySat on the

internet over several months, confirming that HoneySat can operate covertly and efficiently while

collecting highly valuable interaction data.

4.1 Introduction

Artificial satellites are complex devices designed to withstand outer space conditions. They

serve multiple purposes or types of missions that include position and navigation, e.g., the Global

Positioning System (GPS) constellation [249], Earth observation, e.g., the Sentinel constella-

tion [250], and broadband internet service, e.g., the Starlink constellation. In addition, spacecraft

can range from being as massive as thousands of kilograms, such as the International Space Station
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(ISS) to one kilogram CubeSats. As a result, the software and hardware components that make up

a specific spacecraft vary greatly. Likewise, satellite missions’ vary a lot depending on the owner’s

budget. For example, university missions are smaller as they have a limited budget. A cyberattack

on a satellite or satellite constellation (group of satellites) could have disastrous consequences on

a global scale, which is difficult to comprehend. Such an attack could lead to the cessation of

air traffic and widespread communication blackouts. It could also cause food shortages and the

freezing of financial transactions [251]. Furthermore, such an attack could exacerbate the Kessler

Syndrome [252], a scenario in which collisions between satellites and debris in orbit create a

cascade effect, generating even more debris, jeopardizing future satellite launches and operations.

In this increasingly vulnerable environment, the probability of a successful satellite cyberattack

continues to rise. This is driven by three key trends [253]: first, satellite deployments have

increased at an unprecedented pace. For instance, while an average of 82 launches took place

between 2008 and 2017, as many as 197 launches occurred in 2023 alone, each typically carrying

multiple satellites [254]. This surge is partly fueled by the rise of cheaper commercial off-the-shelf

(COTS) components and the availability of more Space Launch Vehicles (SLVs), which makes

access to orbit affordable for smaller institutions, such as universities [255]. Second, ground

station technology has become significantly more affordable (and sometimes open source), greatly

lowering the communication barrier with satellites [256]. Thus, a broader range of malicious actors

can now communicate with satellites. Third, satellite engineers and operators continue to rely on

protocol obscurity practices, such as hiding specialized knowledge about the transmission protocol

implemented on satellites [22].

Although satellite security research has gained increased attention [22, 257, 258, 259], the

relationship between outer space and cyberspace remains poorly understood [260]. At the same

time, space-focused threat intelligence remains sparse, and our current methods for identifying

tactics, techniques, and procedures (TTPs) used against these critical systems are limited. MITRE

ATT&CK currently tracks 152 threat groups but shows only one that targets satellites explic-

itly [261], highlighting a significant data gap. Although the volume of reported cyber incidents
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in the space sector has grown, these reports rarely provide sufficient detail [251]. As a result, the

security community has limited visibility into adversarial activity aimed at space infrastructure.

Honeypots’ ability to collect real-world cyberattack data makes them an ideal solution to this

problem [262]. A honeypot is a decoy computer system intended to lure and entice malicious actors

to interact with it [263]; all the while, the honeypot logs all the interactions the attackers make.

This log data can later be analyzed to discover new and existing TTPs.

Since the release of the first honeypot, the Deception Toolkit, in 1997 [264], a wide range of

honeypots with ever-increasing capabilities have been introduced. These honeypots are used by

universities, companies, and nation-states worldwide [265, 266, 267, 268, 269]. Honeypots are also

used to deter malicious actors from attacking different types of systems, from industrial control

systems [269] to social media platforms [270]. However, as of the time of writing, there is no

space-sector specific honeypot in the literature.

In this dissertation chapter, we present the first satellite honeypot in the literature, HoneySat

to attract and analyze adversaries who attack space infrastructures over the Internet, a commonly

observed threat vector [271, 272, 273, 274]. HoneySat is a modular, high-interaction honeypot

framework that realistically simulates a complete satellite system (ground infrastructure and Satel-

lite). Specifically, HoneySat simulates Small Satellites or SmallSats which are spacecraft with

a mass of less than 180 kilograms[275]. CubeSats for example, are SmallSats. Additionally,

as part of HoneySat, we developed the Satellite Simulator, a Python project to provide generic

simulation functionality for users to populate satellite honeypots with believable data. Unlike ex-

isting Cyber-Physical Systems (CPS) honeypots for Industrial Control Systems (ICS) or Unmanned

Aerial Vehicles (UAVs), HoneySat simulates telemetry and telecommand of a real satellite and

simulated payload behavior. This capability enables the creation of complete testing environments

for satellite software that integrate a variety of simulated subsystems and sensors. For instance,

Satellite Simulator can simulate orbital mechanics (e.g., position tracking, attitude adjustment) and

electrical power systems (e.g., power generation, consumption, and distribution) alongside other

subsystems.
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We leveraged our framework to create honeypots of real-world CubeSat missions. Our results,

backed by our survey of satellite operators, show that HoneySat’s simulation is highly realistic.

Our framework is able to simulate an entire real satellite mission, provides realistic telemetry, and

supports real telecommands.

In summary, we make the following contributions:

• A novel framework, HoneySat, a high-interaction, extensible honeypot for small satellites

(Sec. 4.4).

• The Satellite Simulator, that simulates the physical processes, sensors, and subsystems

necessary for a realistic satellite honeypot [276].

• The results of a survey of experienced satellite operators that provide valuable insights into

how realistically our honeypot performs, as well as experimental evidence demonstrating

that the HoneySat framework can simulate small satellites, collect rich real-world interaction

data, and be customized for multiple satellites (Sec. 4.5).

This work was a joint effort with equal contribution which resulted in a publication titled “Hon-

eySat: A Network-based Satellite Honeypot Framework [276]”. For the purposes of dissertation

delineation, I (Efrén Darı́o López Morales) contributed the design of the threat model, and the

high-level design of the honeypot. My collaborator, Ulysse Planta at the CISPA Helmholtz Center

for Information Security, contributed the detailed technical design, and the implementation of the

system. We coordinated closely during evaluation, experimentation and writing.

4.2 Background

This section lays out key background concepts that are relevant to satellite honeypots. For hon-

eypots: a description of the different existing types (Sec. 4.2.1), as well as the current state-of-the-

art (Sec. 4.2.2). For satellites: their operation (Sec. 4.2.3), their architecture (Sec. 4.2.4), existing

Protocol Ecosystems (Sec. 4.2.5), and tactics, techniques, and procedures (TTPs, Sec. 4.2.6).
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4.2.1 Types of Honeypots

Honeypots are categorized by interaction levels according to the interaction opportunities they

provide. The two main types of honeypots are low-interaction and high-interaction.

Low-Interaction Honeypots. These honeypots offer minimal interaction, simulating real

systems through scripts or finite-state machines. Their advantages are ease of setup and maintenance

due to low resource consumption, and a reduced risk of adversarial takeover. However, they provide

limited interaction opportunities to adversaries which limits the interaction data they provide. Low-

interaction honeypot examples include Conpot [277] and Honeyd [278].

High-Interaction Honeypots. These honeypots offer extensive interaction opportunities via

emulation or advanced simulations [278]. Their main advantage is providing adversaries with

almost limitless interactions, enabling them to provide extensive interaction data. However, they

pose a high risk of adversarial takeover as adversaries have more opportunities to hijack the

honeypot [279]. High-interaction honeypot examples include Cowrie [280] and HoneyPLC [269].

4.2.2 Honeypot’s State of the Art

The literature on honeypots includes hundreds of implementations that simulate a diverse set of

computer systems [281, 282]. From classic implementations that simulate a host’s TCP/IP stack,

such as Honeyd [278], to modern approaches that integrate social media applications, such as

HoneyTweet [270]. However, there is no satellite honeypot in the literature. In the absence of a

satellite honeypot, we now examine the honeypot approaches most related to satellites: Industrial

Control Systems (ICS) [283, 14] and Unmanned Aerial Vehicles (UAV), a.k.a., drones summarized

in Table 4.1.

Satellite systems like ICS must be aware of some physical process, e.g., its position, the sun’s

position, etc, via sensors to acquire data about the physical world. Several ICS honeypots have

simulated these physical processes. For example, ICSnet [284] and HoneyICS [285] simulate

several components such as programmable logic controllers (PLCs), and actuators such as water

valves.

HoneyDrone [286] is a UAV honeypot that integrates different simulations, e.g., Ardupilot, to
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Table 4.1
Comparison of Existing Honeypots and HoneySat.

Keys: = Supported; × = Not Supported.

Honeypot/
Feature

Interaction
Level

Included
Protocols

Physics
Sims

Extensi-
bility

Conpot [277] Low 9 0
HoneyPLC[269] High 3 0

ICSPot [288] High 4 1 ×
HoneyICS[285] High 2 1

HoneyDrone [286] Medium 4 1 ×
HoneySat High 4 6
Addressed
in Section

[276],
[276]

[276],
[276]

[276],
[276] 4.5.5

recreate multiple attack scenarios, including the UAV ground control station. Although UAV hon-

eypots share some similarities with satellites [287], satellite honeypots require additional physical

simulations and involve a more complex operation environment, which we discuss in Sec. 4.2.3.

4.2.3 Anatomy of a Satellite Mission

We now describe the components of a satellite mission. Due to satellite missions’ complexity,

we explain each component and match it with one of the numbers in Fig. 4.1. Every satellite

mission includes the ground segment from which satellite operators control the satellite and the

space segment which includes the satellite itself.

Ground Segment 1 . The Ground Segment (GS) covers the terrestrial supporting infrastruc-

ture required for a successful satellite operation. It consists of a ground station, responsible for

exchanging data with the spacecraft, the computational and network infrastructure required for

communication, but also the systems to operate the satellites, e.g., servers, databases, and user

interfaces [22]. Several ground stations can be connected in a network and coordinated as part of

one GS. The GS includes the Ground Segment Software (GSS) that helps operators schedule and

send commands and visualize data that is sent back in response.

Space Segment 2 . The space segment comprises a satellite or a constellation of satellites.

A satellite is launched into orbit and then establishes communications with the ground segment.

During regular operations, satellites may communicate through one or multiple ground stations [22].
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Figure 4.1
The components commonly found in a satellite mission in the context of the space and ground
segments.

Telecommands (TC) 3 and Telemetry (TM) 4 . The basic data flow between the space and

ground segments are TC and TM [289]. TM is the data the satellite sends to the ground station

which may contain the satellite’s status, responses to previous commands, or payload data [289].

TCs are used to operate the satellite and are transmitted and encapsulated in a space protocol (see

Sec. 4.2.5). The design and implementation of TCs varies depending on the satellite mission. From

a security perspective, TCs are particularly important as an attacker that can send valid TCs to a

satellite can fully take over the mission [22].

Orbital Pass 5 . A satellite and its ground station can communicate only during an orbital

pass. An orbital pass, or more commonly a pass, is when the satellite rises above a ground station’s

horizon and becomes available for communication. A pass’s duration and timing depend on the

satellite’s orbit characteristics and any obstructing objects between the satellite and the ground

station, e.g., mountains [290]. In some cases, such as geostationary orbit (GEO), the satellite can

be above the horizon constantly. The occurrence of passes can be calculated using the spacecraft’s
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orbital elements. A common representation of the orbital elements is the two-line element set

(TLE) [291].

Satellite Mission Operations 6 . Satellite mission operations vary widely depending on the

owning organization, budget, and technology. Nevertheless, they share some commonalities, which

we now describe.

A mission’s operation involves a team of operators that use GSS to operate a satellite or a

satellite constellation and ensure the mission’s success [292]. Operations are carried out in a

Mission Operations Center (MOC), where satellite operators sit at their workstations to manage

TCs sent to the satellite(s).

Satellite operators may also remotely operate satellites 7 by connecting to the ground segment

using tools such as desktop sharing like VNC (Virtual Network Computing) [256], or even rely on

autonomous or semi-autonomous operations [293].

Satellite operations include two main activities: satellite tracking and TC generation and

scheduling. Satellite tracking calculates the satellite’s position in orbit and controls the ground

station(s)’ tracking antenna to establish communication between the ground and space segments.

TC generation and scheduling crafts command to be programmed and sent to the satellite so it can

perform different functions, e.g., read systems status data, schedule orbital maneuvers, schedule

payload operations, and download payload data.

Ground (Segment) Software (GSS). GSS allows satellite operators to carry out the satellite

mission’s routine operations as described in the previous paragraph. GSS are very diverse. Some

satellite missions develop their own GSS while others use open-source [294] or buy proprietary

GSS like GSWeb [295]. There are two main types of GSS: Mission Control Software (MCS) and

Ground Station Control Software (GSCS).

Mission control software 8 manages TCs and scripts to be sent to the satellite and can display

TM. For example, ESA’s SCOS-2000 is an MCS that provides generic functionality that can be

customized for a specific mission to cover the functions required for TM reception and processing

and TC verification [296]. Some satellite missions develop their own MCS. For example, the
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SUCHAI mission team developed their MCS application to send and receive TC/TM [294].

Ground station control software (GSCS) 9 helps satellite operators track and visualize the

satellite’s orbit and provide detailed information about each satellite’s pass. For example, Gpredict

is a popular open-source GSCS that performs real-time satellite tracking and orbit prediction [297].

Gpredict can also interface with and control the radio system and antenna rotor during the satellite

pass.

4.2.4 Satellite Architecture

Satellite architectures are varied and complex, however, here we describe the most common

terminology depicted in Fig. 4.1’s space segment 2 .

When referring to satellite architecture there is a distinction between the platform that facilitates

the successful operation of the satellite’s day to day-to-day activities and the payload. The platform

provides the possibility to run a payload that fulfills the purpose of these missions. This payload

differs based on the goal of the mission and can range from instruments to measure physical

properties to communications systems providing wireless connectivity.

Platform: The platform, or satellite bus, is a system composed of custom-designed or off-

the-shelf subsystems necessary for critical satellite operations. These include, among others, the

Attitude Determination and Control System (ADCS) to maintain the satellite’s orientation (i.e.

attitude) and position to keep the satellite pointed towards antennas or solar panels illuminated; the

Electrical Power Subsystem (EPS) for managing power generation and distribution; the Communi-

cation Subsystem (COMM) and the Command and Data Handling (C&DH) subsystems to facilitate

communications for receiving TC and sending TM and controlling the satellite operations.

All of these subsystems are then controlled via TCs sent to the satellite. TCs may be, depending

on the protocol ecosystem and complexity of the subsystem, interpreted by a central C&DH System

or merely forwarded to the recipient subsystem for further processing [298]. This managerial duty

is left to Flight Software (FS) running on an embedded system of differing complexity. Some

examples include NASA’s Core Flight System (cFS) [299] and F’ (F Prime) [300], KubOS [301],

the German Aerospace Center (DLR)’s OUTPOST [302], and the University of Chile’s SUCHAI
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FS [303]. Attackers aim to gain the ability to send Telecommands to the Flight Software, as this

typically grants control over all spacecraft subsystems.

Payload. The payload is the equipment that the satellite employs to fulfill its mission. Due

to satellites’ varied missions, payloads are heavily customized [304]. For example, if a satellite’s

mission is remote sensing, its payload may include an infrared camera [305]. craft’s essential

functions, acts on TCs, and handles internal data transmitted to and from other systems [298]. The

CDHS is comprised of Flight Software (FS) running on an OBC [22].

4.2.5 Small Satellite Protocol Ecosystems

SmallSat missions can often be categorized into the following categories by the adoption of

protocols and their corresponding philosophies.

Cubesat Space Protocol. The Cubesat Space Protocol (CSP) family of protocols is a one-stop

solution for Small missions [306]. There are not a lot of choices left to the operator/developer

and there are two vendors mainly offering components using this protocol and some that offer

compatibility solutions [295]. If a mission built on CSP is expanded by a commercial subsystem it

will plug in without issue after configuration.

CSP is implemented as an open-source C library called libCSP [306]. CSP follows the TCP/IP

model, including transport and routing protocols and multiple layer 2 interfaces such as I2C (Inter-

Integrated Circuit), CAN (Controller Area Network), and ZeroMQ (ZMQ) for transmission on

TCP/IP networks [307].

In CSP the ground segment interfaces and satellite subsystems are part of a CSP network.

Sending TC is as simple as sending a CSP packet with an address corresponding to a node that

is part of the satellite. The configured static routing tables of the nodes on the network will then

cause the packet to be passed to the ground station and transmitted to the satellite over RF where a

system on board will route the packet to its destination. In case the satellite is not currently doing

a pass, the packet is dropped.

The straightforwardness of CSP makes it particularly interesting for the honeypot use case as the

internal structures of any CSP-based mission will look very similar, so distinguishing two missions
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is difficult as they will use the protocols in a very similar way.

There are also default services running on standardized ports that are enabled by default when

building libCSP [306], for example for network diagnostic (ping) or basic operations (rebooting).

In CSP missions, nodes on the network typically feature a command-line-based interface for

configuration and debugging purposes [295]. This may allow someone with access to it to interact

with the current node and other nodes on the network.

CCSDS Space Communication Protocols. The CCSDS Space Communication protocols are

a vast set of standardized protocols used for different purposes in space communications. A major

CCSDS protocol relevant for SmallSat TM and TC is called spacepacket. This protocol is used

in combination with the ECSS Packet Utilization Standard (PUS) to define how TCs and TM are

encoded and transported. The PUS defines services (and thus sets of TC/TM) for functionality that

satellite missions likely require, including large data transfer or event reporting [308]. Moreover,

mission designers can tailor the PUS standard by selecting a subset of services and sub-services

relevant to their mission needs. Furthermore, it is possible to define custom Services or implement

numerous custom functionalities.

Proprietary Protocols. In addition to these widespread ecosystems, vendor-specific sets of

protocols may be usable on top of more standard protocols or transport higher-layer packets of

known protocols. Some basic small satellites may also have entirely ad hoc protocols that are

limited to use with a single mission or a set of satellites by a specific institution. These proprietary

protocols are not ideal candidates for constructing honeypots as an ecosystem of one mission that is

unique to a small set of missions will look out of place for other missions, preventing generalization.

The choice of ecosystem also influences the choice of GSS as an MCS usually focuses on

a single protocol stack. In addition to the space protocol ecosystems above, satellite operators

use well-known network protocols to connect with the mission’s ground segment services. These

protocols include Telnet, SSH, VNC, FTP, and HTTP. Telnet, SSH, and VNC are used to remotely

connect to the MOC workstations. HTTP is used for web interfaces that operators use to visualize

mission data, and FTP is used to download TM data from the mission data repository. If an
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adversary were to compromise any of these services, they could use it as a stepping stone to target

the satellite itself.

4.2.6 Space Systems’ Tactics, Techniques and Procedures (TTPs)

Tactics, Techniques, and Procedures (TTPs) describe the behavior of a malicious actor in a

structured scheme to understand how they might execute an attack [309, 310]. Several frameworks

have been introduced to standardize space systems’ TTPs. There are two MITRE-style frame-

works, the SPARTA matrix [311] and the SPACE-SHIELD matrix [312]. These matrices list and

describe space security-specific tactics and techniques such as initial access and ground segment

compromise.

4.3 Threat Model

Following Fig. 4.1, we assume an adversary willing to compromise a satellite can only interact

with the space segment simulation by sending TCs from the ground segment first. To gain initial

access to the ground segment, an adversary needs to connect via one of exposed network protocols

depicted in Sec. 4.2.5, namely, VNC, Telnet, TCP/IP, etc., which correspond with the operational

protocols used in real satellite missions.

From there, an adversary may try to launch different commands to take full control and/or

compromise the services offered by the satellite’s mission. Finally, the modeling of physical radio

communication between the space and ground segments, which is commonly used in practice, is

considered out of scope and left for future work.

4.4 HoneySat High-level Design

In this section, we explain the objectives we aim to achieve (Sec. 4.4.1) and the design principles

we follow to meet such objectives (Sec. 4.4.2).

4.4.1 HoneySat’s Design Objectives

Our design aims to achieve the following objectives:

DO-1 Capability to Capture Rich Interaction Data. As explained in Sec. 4.1, the number one

objective of any honeypot is to capture interaction data from which we can derive knowledge
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on adversaries’ TTPs. As such, our first objective for HoneySat is to have capability to capture

rich interaction data.

DO-2 Provide Deception. As we discussed in Sec. 4.1, honeypots’ nature must remain covert to

entice adversaries into interacting with it. As such, our second objective is for HoneySat’s

nature to remain hidden from adversaries.

DO-3 Provide Extensibility and Customizability. A framework’s main purpose is to provide

generic functionality that can be customized to meet the user’s needs, in HoneySat’s case, we

must be able to support multiple SmallSats. For example, a particular SmallSat may use CSP

or CCSDS ecosystems. Additionally, each SmallSat mission has a particular orbit that must

be customizable. As such, our third objective is for HoneySat to provide extensibility and

customizability.

4.4.2 HoneySat’s Design Principles

To meet our objectives, we selected the following principles:

DP-1 High-Interaction Simulation. As we described in Sec. 4.2.1, high-interaction honeypots

give adversaries the same or almost identical interaction opportunities as a real satellite. Thus,

they can log many of the TTPs discussed in 4.2.6. For these reasons, we selected high-

interaction simulation as our first design principle. This design principle is based on design

objective DO-1.

DP-2 Realistic Simulation. As we discussed in Sec. 4.2.2, satellites keep track of their orbit

location, the position of the sun, among others. These details must be simulated by our

honeypot; otherwise, they may alert adversaries that they are interacting with a fake system.

This design principle is based on design objective DO-2.

DP-3 Modularity. As we explained in Sec. 4.2, satellites are complex and diverse systems. There

is no one-size-fits-all solution. To tackle this problem, we designed HoneySat to be modu-

lar. Modularity allows us to insert, remove, or change any part of our honeypot framework
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Figure 4.2
HoneySat’s Theory of Operation.

without implementing a new honeypot from scratch. This design principle is based on our

objective DO-3.

4.4.3 Theory of Operation

In this section, we provide a brief overview of how the theory of operation works by following

the numbers in Fig. 4.2.

An adversary gets initial access via one of the Exposed Network Protocols 1⃝. On interaction

with the Simulated Ground Segment, an attacker is presented with access to the Ground Software

2⃝. The configuration of this ground software is defined by the Ground Configuration, which allows

the ground software to look like one of many different missions from its protocol ecosystem to the

attacker. The attacker can then interact with the Ground Software, while their actions are reported

to the Log Database. They might want to try to gain more privileges on the ground segment or try

to send TC to the space segment. Instead of deploying a ground station with an RF transmitter and

associated hardware, we employ the Radio Simulator 3⃝ to handle all simulated radio frequency

communications.

When an attacker uses the ground segment to send a valid TC or raw packets, the Radio

Simulator checks whether the satellite configured in the Satellite Personality is currently passing
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over the designated ground station location. If so, the Radio Simulator forwards the TC to the

Flight Software Runtime 4⃝. When the Flight Software Runtime receives a command, it will run

the corresponding Flight Software Service to compute a response 5⃝. In case it requires either

changes to an on-board system’s state or a sensor value to execute the TC, it will invoke the Satellite

Simulator for this 6⃝. The Satellite Personality contains the configuration used by the Satellite

Simulator. Once a TC is processed, the resulting TM is routed back through the Radio Simulator

to either the attacker or the ground software used by the attacker 7⃝-12⃝, and is also recorded in our

Log Database.

As we stated in Sec.4.1, my collaborator, Ulysse Planta at the CISPA Helmholtz Center for

Information Security, contributed the detailed technical design, and the implementation of the

system and these are available in our publication titled “HoneySat: A Network-based Satellite

Honeypot Framework [276]”.

4.5 Evaluation

This section lists three experimental questions designed to test HoneySat’s alignment with

our design objectives. Next, we present four sets of experiments that provide empirical evidence

confirming that our design objectives have been achieved within HoneySat. We describe each

experiment’s environment, methodologies, and results.

4.5.1 Experimental Questions

These questions aim to determine whether or not HoneySat’s meets the design objectives

outlined in Sec. 4.4.1.

Q-1 Can HoneySat offer extensive interaction opportunities to adversaries?

Since capturing data on varied techniques is the purpose of any honeypot, we explore the

capabilities of HoneySat, as described in Sec. 4.4. This question is related to design objective

DO-1 and is addressed in Sec. 4.5.2 and 4.5.4.

Q-2 Can HoneySat simulate a SmallSat mission well enough to deceive adversaries?

After enticing an adversary HoneySat must keep its true nature hidden, we need to simulate
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the satellite’s communication and physics characteristics described in Sec. 4.2.4. This question

relates to design objective DO-2 and is answered in Sec. 4.5.3.

Q-3 Can HoneySat simulate different SmallSat missions?

HoneySat’s customization is important because it would allow users of our framework to imple-

ment their own honeypots. This question relates to design objective DO-3, and we answer it in

Sec. 4.5.5.

To answer the above research questions we conducted four experiments. First, in Sec. 4.5.2 we

craft multiple attacks in a controlled environment to quantify the level of interaction that HoneySat

provides. Second, in Sec. 4.5.3 we conduct a survey with experienced satellite operators to evaluate

HoneySat’s realism. Third, in Sec. 4.5.4 we deploy HoneySat and expose it to the Internet to test

its deception capabilities. Fourth and final, in Sec. 4.5.5 we add an additional protocol ecosystem

to HoneySat to test its extensibility potential.

4.5.2 TTP Interaction Experiment

This experiment seeks to answer Q-1 by quantifying the different interactions that HoneySat

provides. To achieve this, we leveraged the SPACE-SHIELD matrix (Version 2.0) [312] discussed

in Sec. 4.2.6. SPACE-SHIELD provides a collection of adversary tactics and techniques for space

systems. In this experiment, we determined the number of tactics and techniques that HoneySat

supports. SPACE-SHIELD consists of 14 tactics and 62 techniques. However, not all of them are

applicable to a virtual, network-based honeypot such as HoneySat. Applicability is defined by the

limitations of a virtual honeypot which does not implement any real hardware. For example, the

technique Compromise Hardware Supply Chain involves “replacing a hardware component in the

supply chain with a custom or counterfeit part” which is out of the scope of a virtual honeypot.

Taking this into consideration, 14 tactics, and 33 techniques are applicable to HoneySat.

Experiment Description. Our experimental environment included two hosts. One host running

HoneySat and the adversary host. The HoneySat host ran Ubuntu 23.10 and was configured with

the SUCHAI-2 satellite and ground personalities. The adversary host ran a Telnet client. Both
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hosts were connected to the same network.

Experiment Methodology. We designed one interaction or exploit for each of the applicable

33 techniques for our honeypot. The interactions involved ground segment simulations such as the

web interface. The exploits were simple, using one TC, or complex with multiple TCs involved.

The interactions were designed as examples of how the techniques in the SPACE-SHIELD matrix

can be implemented in our honeypot.

Experiment Results. We crafted 16 exploits and 17 interactions following the above methodol-

ogy. For example, the technique T1007 - System Service Discovery’s description reads “Adversaries

may try to gather information about registered local system services. Adversaries may obtain infor-

mation about services using tools and OS utility commands. Adversaries may use the information

from System Service Discovery during automated discovery to shape follow-on behaviors, including

whether or not the adversary fully infects the target and/or attempts specific actions.”

Based on this description, we designed the following exploit to capture information about the

satellite’s running processes:

TC-1: 1: obc_system ps -aux > ps.log

TC-2: 1: tm_send_file 10 ps.log

Similarly, technique T2014 - Backdoor Installation reads “An attacker can interfere with the

hardware or the software, integrating or modifying the existing software, hardware configuration,

or the transponder configuration to permit himself future access to the resource”. Therefore, we

designed the following exploit to upload a malicious script to the satellite software:

TC-1: tm_send_file backdoor.sh 1

TC-2: 1: obc_system ./recv_files/backdoor.sh

Due to space limitations, we do not describe all the exploits and interactions here. However, the

complete exploit and interaction list is available in Table 4.5 in Appendix 4.7.1. The overall results

for this experiment are depicted in Table 4.2. The key findings of our experiment are shown below,

providing strong evidence for answering question Q-1 in the affirmative and design objective DO-1
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Tactics
SPACE-SHIELD

Techniques
(Applicable to Virtual Honeypots)

HoneySat
Supported
Techniques

Reconnaissance 2 2
Resource Development 2 2
Initial Access 2 2
Execution 2 2
Persistence 2 2
Privilege Escalation 2 1
Defense Evasion 4 4
Credential Access 3 3
Discovery 2 2
Lateral Movement 4 1
Collection 2 2
Command & Control 2 2
Exfiltration 2 1
Impact 7 7
Total 38 33

Table 4.2
Tactics and techniques supported by HoneySat compared to the ones included in the
SPACE-SHIELD matrix that are applicable to virtual honeypots.

as achieved.

Key findings Q-1
• HoneySat supports 86.8% of the SPACE-SHIELD matrix techniques possible in a virtual

satellite honeypot.

• HoneySat supports 100% of the SPACE-SHIELD matrix tactics.

4.5.3 SmallSat Operators Survey

Evaluating the realism of a satellite honeypot is challenging for two main reasons. First, as

we discussed in Sec. 4.1, satellites, including SmallSats are very diverse. Second, there is no

established metric or tool, such as Nmap’s OS detection [313], to quantify the level of realism of

our honeypot.

To evaluate the realism and deception capabilities of HoneySat, we surveyed experienced, real-

world SmallSat operators. Because operators interact with real-world SmallSat missions on a daily

basis they are experts and thus are the best population to rigorously evaluate HoneySat.
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4.5.3.1 Survey Structure

We divided our survey into five sections. The first section collected essential background

information about the participants, while the second part focused on their professional experience.

In this second section, participants were asked whether they worked in industry, government, or

academia and to self-report their cybersecurity skills as well as satellite-related skills (e.g., satellite

hardware engineering). The third section of the survey probed participants’ satellite operation

experience, including how many missions they had operated and which tools they used.

The largest section of the survey included 48 questions about satellite honeypot operation tasks.

Participants watched eight 1–2 minute recordings of HoneySat ’s VNC view, each showcasing the

ground and satellite personality of a real CSP-based CubeSat mission (based on the SUCHAI-2

CubeSat [314]). Every recording highlighted a different feature of HoneySat by replicating a real-

world satellite mission operation, as discussed in Section 4.2. After each recording, participants

answered questions designed to assess how realistic they found that particular aspect of the honeypot.

Table 4.3 lists all of the satellite operations demonstrated in these recordings. Finally, once

participants had seen multiple elements of our honeypot, the survey concluded with an overall

evaluation section. Both the honeypot operation tasks and the overall evaluation used 5-point

Likert scale [315] questions to measure participants’ positive or negative reactions.

Satellite Operation Evaluated Component No. Qts.

Telecommand Scheduling Mission Control SW 6
Pass Prediction Ground Station Control SW 6

Antenna Positioning Ground Station Control SW 6
EPS Telemetry Satellite Simulator 6

Temperature Telemetry Satellite Simulator 6
ADCS Telemetry Satellite Simulator 6

RGB Camera Telecommand Satellite Simulator 6
Ping Test Radio Simulator 6

Table 4.3
Summary of questions in Section 4.5.3, satellite honeypot operation tasks of the survey (48 total).
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4.5.3.2 Participants

We conducted the survey via Qualtrics and distributed the survey directly to active SmallSat

mission operators from previously identified missions. In total, we received responses from 14

satellite operators who have between 1 and 5 years of experience operating satellites and have

operated between 2 and 7 unique missions. In terms of demographics, 21.4% (3/14) of participants

were female, 71.4% (10/14) male and 7.1% (1/14) preferred not to answer. 57.1% (8/14) belonged to

the 18-24 age group, 35.7% (5/14) to 25-34 and 7.1% (1/14) to 35-44. 28.5% (4/14) of participants’

highest level of education was high school, 35.7% (5/14) bachelor’s degree, 14.2% (2/14) master’s

degree and 21.4% (3/14) Ph.D. In regards to geographic location, 78.5% (11/14) of participants

were located in Europe, 14.2% (2/14) in North America and 7.1% (1/14) in South America.

Recruiting participants was challenging due to the rarity and specialized nature of the required

expertise. Over a span of four months, we reached out to national and international institutions, as

well as private corporations involved in operational satellite missions to identify suitable partici-

pants.

4.5.3.3 Methodology and Key Results

In the survey, we aimed to evaluate three key aspects of our honeypot. First, whether the ground

segment simulations are realistic; second, whether the space segment simulations are realistic; and

third, whether HoneySat, as a whole, provides a convincing and realistic system.

Before describing the results it is important to emphasize that the participants were informed

that the recordings showed a simulation of a satellite mission and not of a real mission.

Ground Segment Realism. To understand if HoneySat’s ground segment is realistic we showed

participants recordings of different satellite operations (discussed in Sec. 4.2.3) performed with

HoneySat, to showcase the ground segment components listed in Table 4.3.

For example, one of the recordings shows the pass prediction operation which involves calcu-

lating when and where a satellite will be visible or within range of a specific ground station. This

operation is performed using the ground station control software. After the participants watched a

recording of this operation, we asked them to rate their perceived level of realism. 85.7% of par-
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ticipants agreed or strongly agreed that the pass prediction operation done in HoneySat resembles

that of a real mission.

Another relevant operation is the telecommand scheduling operation which involves the planning

and organization of the commands to be sent to the satellite during a pass. 42.8% of participants

strongly agreed that the telecommand scheduling operation performed in HoneySat resembles that

of a real mission mentioning the use of a terminal-based mission control software. Interestingly,

35.7% of participants neither agreed nor disagreed, citing that they do not use a command line

tool but instead a GUI. These results indicate that some of the surveyed operators use a command

line-based mission control software while others use a GUI-based confirming the diversity of means

of operation in Sec. 4.2.3.

In summary, according to our survey, most participants perceive the ground segment simulated

by HoneySat as comparable to that of a real satellite mission. While a few participants mentioned

that they expected to see a GUI-based mission control software instead of a command line-based

one, this is something that we expected, as the means of satellite operations vary greatly among

missions. Nevertheless, thanks to HoneySat’s modularity HoneySat can be extended to use a

GUI-based mission control software such as YAMCS [316].

Space Segment Realism. In a similar manner, to understand if HoneySat’s space segment

is realistic, we showed participants recordings of different satellite operations that make use of

HoneySat’s space segment simulations to showcase multiple components of the space segment

listed in Table 4.3. For example, one of the recordings shows the EPS Telemetry operation which

involves the collection of data from the Electrical Power Subsystem discussed in Sec. 4.2.4. This

operation is performed using the mission control software to send telecommands and download

the latest EPS telemetry. After the participants watched a recording of this operation performed

by HoneySat, we asked them to rate their perceived level of realism of the telemetry output shown

during the operation. 57.1% of participants agreed or strongly agreed that the telemetry shown in

the EPS Telemetry operation resembles that of a real mission mentioning realistic EPS values such

as voltage, and temperature. 14.2% neither agreed nor disagreed mentioning that the EPS temeletry
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was presented in a different format. Finally, 28.5% disagreed or strongly disagreed mentioning that

the telemetry included less values than the mission that they had operated. These results indicate

that the EPS telemetry generate by the Satellite Simulator is considered realistic by the majority of

participants.

We also asked participants to asses the ping test operation. This operation is a diagnostic

procedure used to verify the communication link between a ground station and the satellite. It

involves sending CSP packets between two CSP nodes, namely the ground segment and the space-

craft. After the participants watched a recording of this operation performed on HoneySat, we

asked them to rate their perceived level of realism. 64.2% of participants agreed or strongly agreed

that the ping test operation resembles that of a real mission citing the realistic response times.

21.4% of participants neither agreed nor disagreed stating that in their experience the ping test also

downloads additional telemetry. Finally, 14.2% disagreed or strongly disagreed noting that in their

mission the ping command has a different name. The results of the ping test operation indicate

that HoneySat’s radio simulator (which controls the communication between the ground and space

segments) is considered to realistically simulate the communication of a real satellite mission by

the majority of participants. A significant key finding of our survey is shown below.

Overall, the results obtained provide convincing evidence for answering question Q-2 in the

affirmative and design objective DO-2 as achieved.

Key finding Q-2
71.4% of surveyed satellite operators agreed or strongly agreed with the following statement:

“If I did not know this was a honeypot simulation of a CubeSat satellite mission, I would

have believed it to be an actual CubeSat satellite mission.”

4.5.4 Internet Interaction Experiment

This experiment explores HoneySat’s capabilities to entice external actors in the wild by de-

ploying our honeypot over the Internet. To accomplish this, we leveraged the Shodan search engine.

Shodan is a search engine for Internet-connected devices that scans the whole Internet and indexes
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Honeypot Source
IP

Cmds
Received

Engaged
Time

Honeypot 1 Egypt 4 2 hr
Honeypot 2 Sweden (Tor) 9 5 min
Honeypot 1 France (Tor) 6 4 min
Honeypot 3 USA 8 3 min

Table 4.4
Exposed Telnet interactions received.

exposed servers and their TCP ports. Shodan then reads the banner information for each port. For

example, it gathers the web headers and Telnet login banners [317]. Additionally, Shodan tags

servers as honeypots if the servers have too many open ports [269].

Experiment Description. We deployed and configured five HoneySat instances over the

Internet and exposed TCP port 24 for the Telnet server and 80 for the web interface so that anybody

can interact with it and allow Shodan to index our server and its banners. We deployed four

HoneySat instances in total.

Experiment Results. Our honeypot servers were successfully indexed by Shodan. Both Telnet

and web banners were captured, and none of them were tagged as honeypots.

Our honeypots successfully enticed external actors and captured 4 distinct sessions (show in

Table 4.4) via the exposed Telnet protocol. The exposed Telnet protocol was implemented so

that a human had to type “activate” in the terminal before sending commands. This feature was

implemented to filter out Internet Telnet bots. As such, the commands that we describe below were

sent by a human and not a crawler or Internet bot.

We now describe the commands received in the first interaction session shown in Table 4.4.

1. help: Shows the ground software available commands.

2. ls: The Linux ls command is not a valid command in the honeypot ground software.

3. fp show: Prints the list of commands in the current flight plan (The flight plan refers to a

pre-programmed sequence of tasks, and commands that guide the satellite’s operation).

4. com debug: Prints the current CSP network configuration including the current CSP node,

interfaces and routing table.
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The commands fp show and com debug are flight software-specific commands which suggests

that the adversary was successfully deceived by our honeypot and purposefully sent flight software

commands instead of haphazardly sending unrelated commands. Another factor that indicates that

the adversary was deceived is that they engaged with our honeypot over a period of two hours

indicating that they did not immediately identified it as a honeypot.

Although the data captured is limited to 16 commands, it is important to emphasize that satellite

systems are niche targets, and it is exceptionally rare to see unsolicited, satellite-specific interactions

on the public internet, so the fact that HoneySat attracted any targeted commands at all suggests

it was successful in appearing convincing to at least some adversaries. Second, the nature of the

interactions matters as much as the quantity: the commands we received were structured, mission-

relevant, and plausibly malicious, indicating intentional engagement rather than random scanning

or generic bot activity. Third, our goal was to demonstrate feasibility and validate that a virtual

satellite honeypot can elicit realistic and domain-specific attacker behavior.

In summary, these results provide strong evidence for answering question Q-2 in the affirmative

and design objective DO-2 as achieved.

Key finding Q-2
Human adversaries interacted with three of our HoneySat-powered honeypots during four

distinct Telnet sessions resulting in 16 satellite mission-specific commands captured.

4.5.5 Case Study: Generic CCSDS Mission Honeypot

In this case study we are interested in testing the extensibility capabilities of HoneySat to support

additional ecosystems (discussed in Sec. 4.2.5) by adding a second ecosystem to HoneySat, namely

the CCSDS ecosystem.

Experiment Description. We selected the CCSDS ecosystem because it is a standard protocol

suite used by other SmallSats [22]. To accomplish this, we leveraged an open-source CCSDS

ecosystem-based flight software framework, RACCOON OS [318], and YAMCS, an open-source

Mission Control software framework with built-in support for PUS [316].
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Methodology. Building upon our HoneySat framework implementation, we enhanced the

system by integrating various components of the RACCOON OS and the YAMCS framework.

Results. We successfully extended HoneySat to support the CCSDS ecosystem. Regarding

the ground segment we implemented the exposed network protocol using YAMCS’ built-in web

interface (Fig. 4.4), for the mission control software we used YAMCS’s built-in Mission Control

Software [316], for the radio simulator we used RACCOON’s communication application and for

the ground configuration and logging repository we again used YAMCS built-in features.

Focusing on the space segment, we implemented the satellite flight software runtime using

the RACCOON framework, and for the Flight Software Services, we configured the RACCOON

framework to connect it to the YAMCS’s MCS on the ground segment. The satellite personality

and logging repository were based on the existing HoneySat implementations.

The majority of the effort involved in extending HoneySat to support the CCSDS ecosystem was

dedicated to understanding the ecosystem itself, including components such as PUS. Additionally,

we had to analyze the RACCOON flight software code and the YAMCS framework documentation.

The only extra implementation that was required was the Flight Software Services which we

modified using Rust. Other than that we reused several elements of HoneySat like the satellite

personality and the Satellite Simulator.

In summary, these results provide strong evidence for answering question Q-3 in the affirmative

and design objective DO-3 as achieved.

Key findings Q-3
Out of the box HoneySat supports CSP and CCSDS, the two most widely used standard

space ecosystems, and was evaluated by simulating 3 real-world SmallSats.

4.6 Discussion and Future Work

Limitations. Currently, the functionality of some subsystems within HoneySat’s Satellite

Simulator are constrained by the quality of the data provided. For example, the resolution of

Earth’s images generated by our camera payload depends on the resolution of its source data
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(USGS [319]). Consequently, creating a honeypot for a satellite with a high-resolution camera

payload would not be feasible without addressing the underlying issues of data source quality.

Additionally, HoneySat is currently designed as a virtual honeypot and does not support radio link

attacks such as jamming.

Broader Applications of HoneySat. While originally designed as a honeypot, our framework

offers the flexibility to support a range of applications beyond its initial purpose. One promising use

case is the development of digital twins for satellite systems, enabling the simulation of real-world

satellite subsystems and communication scenarios. Furthermore, HoneySat can be integrated into

cyber range environments to enhance training programs and cybersecurity simulation exercises.

Lastly, HoneySat serves as an educational tool, providing researchers, industry professionals,

and security enthusiasts with an opportunity to explore and learn about satellite architecture and

operations.

4.7 Chapter Conclusion

Although we have yet to witness a Stuxnet-like cyberattack on space systems, security re-

searchers and professionals need to develop effective countermeasures to secure satellites. In this

dissertation chapter, we introduced HoneySat, the first satellite honeypot that provides a much-

needed alternative source of empirical data on attackers’ TTPs. We created a satellite honeypot

that realistically simulates an entire satellite system, including its sensors and subsystems.

We performed several experiments that provide strong evidence that the framework can obtain

rich interaction data, can be extended and customized, and simulate a satellite to keep its honeypot

nature hidden from potential adversaries. Finally, we hope that security researchers and profession-

als take advantage of HoneySat’s open-source implementation and use it as a foundation not only

for satellite honeypot deployments but also for simulation, education, and training applications.

Appendix B

4.7.1 Interaction Sequences and Exploits

Table 4.5 includes all the interaction sequences and exploits we performed during the experi-

ments in Sec. 4.5.2.
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Table 4.5
Tactics, Techniques and Procedures’ Interaction Experimental Exploits.
Tactic Technique ID Subsystem Exploit

Reconnaissance Active Scanning (RF/Optical) T2001 Threat Model Limitation N.A.
Reconnaissance Gather Victim Mission Information T2002 Web Interface Use the Web Interface to gather mission documentation.
Reconnaissance Gather Victim Org Information T1591 Web interface Use the Web Interface to gather mission documentation.
Reconnaissance In orbit proximity intelligence T2029 Threat Model Limitation N.A.
Reconnaissance Passive Interception (RF/Optical) T2004 Threat Model Limitation N.A.
Reconnaissance Phishing for Information T1598 Tangential N.A.
Resource Development Acquire or Build Infrastructure T1583 Telnet interface Acquire ground segment using the Telnet service.
Resource Development Compromise Account T2038 Tangential N.A.
Resource Development Compromise Infrastructure T1584 Threat Model Limitation N.A.

Resource Development Develop/Obtain Capabilities T2007 Ground software.
Flight software.

Exploit OS, libraries or software vulnarabilities.
Deploy custom CSP application to forge TC/TM.

Initial Access Direct Attack to Space Communication Links T2008 Ground software.
Flight software.

Use the ground software to send/receive TC/TM.
Deploy custom CSP application to forge TC/TM.

Initial Access Ground Segment Compromise T2030 Telnet interface.
Ground software. Use the telnet interface to access the ground software.

Initial Access Supply Chain Compromise T1195 Tangential N.A.
Initial Access Trusted Relationship T2039 Threat Model Limitation N.A.
Initial Access Valid Credentials T2009 Tangential N.A.

Execution Modification of On Board Control Procedures modification T2010 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file code.py 1
1: obc system python recv files/code.py

Execution Native API T1106 Ground software.
Flight software.

Execute shell commands or delete system files:
1: obc system <command>
1: obc rm -r $HOME

Execution Payload Exploitation to Execute Commands T2012 Tangential N.A.

Persistence Backdoor Installation T2014 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file backdoor.sh 1
1: obc system ./recv files/backdoor.sh

Persistence Key Management Infrastructure Manipulation T2013 Tangential N.A.

Persistence Pre-OS Boot T1542 Ground software.
Flight software.

Use obc system, obc rm, obc mkdir commands.
Upload/modify an OS configuration file.
Start/stop/schedule execution of services/daemons.

Persistence Valid Credentials T2009 Tangential N.A.
Privilege Escalation Become Avionics Bus Master T2031 Implementation limitation N.A.

Privilege Escalation Escape to Host T1611 Docker.
Virtual machine. Escape the container/VM with previously crafted exploits.

Defense Evasion Impair Defenses T1562 Ground software.
Flight software.

Send commands to change operation mode.
1: drp set var name obc opmode 0

Defense Evasion Indicator Removal on Host T1070 Ground software.
Flight software.

Use commands to remove artifacts, logs, etc.:
1: obc rm <path>

Defense Evasion Masquerading T2040 Ground software.
Flight software.

Use commands to upload artifacts modify system settings:
tm send file articaft 1
1: obc mv artifact /etc/config/artifact

Defense Evasion Pre-OS Boot T2041 Ground software.
Flight software.

Use obc system, obc rm, obc mkdir commands.
Upload/modify an OS configuration file.
Start/stop/schedule execution of services/daemons.

Credential Access Adversary in the Middle T2042 Ground software.
Flight software. Deploy a CSP application to capture/inject CSP packets.

Credential Access Brute Force T2043 Ground software.
Flight software.

Brute force valid TC parameters:
1: obc ebf <KEY>

Credential Access Communication Link Sniffing T2044 Ground software. Scape the ground software or docker and run tcpdump.
Deploy a CSP application to capture/inject CSP packets.

Credential Access Retrieve TT&C master/session keys T2015 Tangential N.A.
Discovery Key Management Policy Discovery T2032 Tangential N.A.

Discovery Spacecraft’s Components Discovery T2034 Ground software.
Flight software.

Send TC to redirect satellite logs to ground segment:
1: log set 5 2 10

Discovery System Service Discovery T1007 Ground software.
Flight software.

Capture running processes information
1: obc system ps -aux >ps.log
1: tm send file 10 ps.log

Discovery Trust Relationships Discovery T2033 Tangential N.A.
Lateral Movement Compromise a Payload after compromising the main satellite platform T2045 Implementation Limitation N.A.

Lateral Movement Compromise of satellite hypervisors T2017 Docker.
Virtual machine. Escape the container/VM with previously crafted exploits.

Lateral Movement Compromise the satellite platform starting from a compromised payload. T2046 Implementation Limitation N.A.
Lateral Movement Lateral Movement via common Avionics Bus. T2016 Implementation Limitation N.A.

Collection Adversary in the Middle T1557 Ground software.
Flight software. Deploy a CSP application to capture/inject CSP packets.

Collection Data from link eavesdropping T2018 Ground software.
Flight software.

Scape the ground software or docker and run tcpdump.
Deploy a CSP application to capture/inject CSP packets.

Command and Control Protocol Tunnelling T2047 Ground software.
Flight software. Deploy an malicious application that sends data over CSP

Command and Control Telecommand a Spacescraft T2019 Ground software.
Flight software.

Use the ground software to send TC:
1: com ping 1

Command and Control TT&C over ISL T2048 Threat Model Limitation N.A.
Exfiltration Exfiltration Over Payload Channel T2021 Implementation Limitation N.A.

Exfiltration Exfiltration Over TM Channel T2022 Ground software.
Flight software. The atacker deploys a custom CSP node or a backdoor

Exfiltration Optical link modification T2037 Threat Model Limitation N.A.
Exfiltration RF modification T2036 Threat Model Limitation N.A.
Exfiltration Side-channel exfiltration T2035 Threat Model Limitation N.A.

Impact Data Manipulation T2054 Ground software.
Flight software.

Send TC to modify/reset TM database:
1: drp set var name drp ack ads 10000000
1: drp reset payload 1 1010
1: drp reset status 1010

Impact Ground Segment Jamming T2050 Threat Model Limitation N.A.

Impact Loss of spacecraft telecommanding T2055 Ground software.
Flight software.

Send TC to change communication paramters.
Modify network configuration in the ground station.

Impact Permanent loss to telecommand satellite T2027 Ground software.
Flight software.

Send TC to destroy filesystem:
1: obc system rm -rf –no-preserve-root /

Impact Resource damage T2028 Threat Model Limitation N.A.

Impact Resource Hijacking T1496 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file code.py 1
1: obc system python recv files/code.py

Impact Saturation of Inter Satellite Links T2052 Threat Model Limitation N.A.

Impact Saturation/Exhaustion of Spacecraft Resources T2053 Ground software.
Flight software.

Send TC to create a reset loop:
1: fp set cmd dt 10 2147483647 10 obc reset

Impact Service Stop T1489 Ground software.
Flight software.

Send TC to lauch a fork bomb or a reset loop
1: obc system :(){ :—:& };:
1: fp set cmd dt 10 2147483647 10 obc reset

Impact Spacecraft Jamming T2049 Threat Model Limitation N.A.

Impact Temporary loss to telecommand satellite T2026 Ground software.
Flight software.

Send TC to make the system unresponsive
1: obc system sleep 3600

Impact Transmitted Data Manipulation T2024 Threat Model Limitation N.A.
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Figure 4.3
Architecture of dockerized Generic CSP Honeypot.

4.7.2 Deployment and Security Hardening Implementation

Figure 4.4
Screenshot of the YAMCS web interface, displaying a TM packet, returned from the Generic
CCSDS Mission Honeypot.

As we mentioned in Sec. 4.2.1, high-interaction honeypots such as HoneySat present a high

risk of adversary takeover. To mitigate this risk, we implemented HoneySat with two sandboxing

layers.
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Virtual Machine. VMs provide the highest isolation level among sandboxing techniques. We

implemented HoneySat in VM environments to leverage VMs’ robust security.

Containerization. After we completed HoneySat’s development, we used Docker Com-

pose [320] to containerize each of our framework’s applications. Specifically, we created four

different containers depicted in Fig. 4.3. Containerizing HoneySat provides two benefits. First, it

creates another sandboxing layer that prevents adversaries from using our honeypot to access the

underlying system [279]. Second, it proves a convenient and flexible way to deploy HoneySat.

Firewall. In addition the previous two measures we also enabled and configured a standard

firewall to allow only the required TCP ports that our honeypot uses. This improves our deployment

security by blocking any connections to ports that might be vulnerable to documented attacks.
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CHAPTER V: CONNECTED AND AUTONOMOUS VEHICLES SANDBOX

Abstract

Connected and Autonomous Vehicles (CAVs) are a core component of future transportation,

adopting paradigms such as Vehicle-to-Cloud (V2C) to provide data analytics and customized

mobility services, i.e., entertainment for passengers. This innovative approach has also provided

adversaries with a new attack surface to compromise both the security and safety of CAVs, poten-

tially putting human lives at risk. However, despite its daunting importance, this novel threat model

remains underexplored in the literature.

To address this research gap, this dissertation chapter presents the first systematic threat analysis

of the V2C threat model. To accomplish this, we introduce two novel systems. First, Grand Hack

Auto, the first interactive CAV sandbox environment that simulates the required V2C infrastructure

for threat analysis, and HYDRA, the first synthetic malware for CAVs, designed to implement

multiple CAV-specific Tactics, Techniques and Procedures (TTPs). TPP characterize adversaries’

behavior in a structured manner and help us model, understand, and plan countermeasures against

such threats.

Our results show that exploiting V2C connectivity has serious consequences as they may allow

for adversaries to orchestrate multi-vehicle collision incidents over the Internet. Additionally, Grand

Hack Auto and HYDRA demonstrate a high level of robustness by realism by successfully integrating

them with two enterprise level cloud environments, HiveMQ and Mosquitto. Additionally, our

systematic threat analysis shows that our frameworks supports 15 techniques that rely on the V2C

threat model. These results demonstrate that Grand Hack Auto and HYDRA are highly-effective

tools that may allow for better protections against threats on V2C-enabled CAVs.

5.1 Introduction

Connected and Autonomous Vehicles (CAVs) have been forecast as the future of transportation.

As an example, the U.S. Department of Transportation (USDOT) considers CAVs as a central

technology in its development plans [321]. Also, several companies including Tesla, Waymo, and
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Honda have developed their own models of CAVs in the past few years [322]. However, CAVs

have been shown to be vulnerable to cyberattacks [323]. For example, Tesla CAVs are vulnerable

to relay attacks which allows malicious actors to unlock and steal cars [11].

Compounding this problem is the fact that CAVs are increasingly connected to the cloud due to

the Vehicle-to-Cloud (V2C) connectivity paradigm [324], which allows for CAVs to provide users

with new services such as entertainment.

In such regard, the MQTT network protocol has become the most popular solution among

CAV Original Equipment Manufacturers (OEMs) to deliver V2C services [325, 326] due to its low

network overhead and its ability to maintain sessions even in deadzones without cellular coverage.

As an example, BMW’s DriveNow service uses MQTT as a part of its backbone cyberinfras-

tructure [327]. Moreover, MQTT has become the de facto standard to provide CAVs mobility

services [325] including, but not limited to, messaging services, data analytics and command pro-

cessing. To deliver these services, OEMs rely on IoT cloud providers who provision the necessary

infrastructure (storage, processing, networking), for example, HiveMQ’s MQTT Broker [328] and

Amazon Web Services’ AWS IoT Core product [324]. Although MQTT provides built-in security

features such as authentication and encryption [329] these are not always configured or even en-

abled [330]. In 2018, 99.71% of the MQTT Internet deployments, as listed by the Shodan search

engine, did not use encryption [331].

While extensive research has been conducted on securing in-vehicle networks such as CAN bus,

the security of V2C communication channels remains poorly understood, thus potentially providing

adversaries with a new attack surface to attack CAVs. In this dissertation chapter we explore the

emerging V2C threat model by analyzing the security implications of MQTT-based communication

between CAVs and cloud services, highlighting the tactics, techniques and procedures (TTPs)

that adversaries may exploit and their real-world consequences for CAVs. For example, a V2C-

enabled technique is Internet Communication [30] where adversaries use a compromised Internet

connection for command and control and to exfiltrate the vehicle’s data.

To accomplish this, we introduce Grand Hack Auto, the first CAV interactive customizable
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framework designed to analyze attacks and malware that take advantage of the V2C threat model.

Grand Hack Auto leverages sandboxing, a well-known method, modeling an isolated, safe environ-

ment to study malicious software, which has been shown to be an essential tool for Cyber Threat

Intelligence (CTI) gathering and is instrumental in preventing the spread of malicious software

across a production system, in this case, a CAV [25].

Grand Hack Auto simulates the physical processes and properties of CAVs (e.g., speed and

acceleration), the MQTT architecture that connects vehicles to the cloud (e.g., clients and brokers),

and the V2C network infrastructure required to test adversarial behavior (e.g., network configuration

and logging).

In addition, we also introduce HYDRA, the first CAV synthetic malware designed to work as

a “Swiss army knife” to implement multiple MQTT adversarial tools such as reconnaissance and

Command and Control (C2) [332].

HYDRA also implements CAV-specific attacks such as the Coordinated Multi-Vehicle Collision

attack [333], which abuses the V2C threat model to orchestrate CAV crashes. HYDRA also allow us

to gather data to understand the TTPs available in V2C, thus providing a valuable tool that allows us

to understand the impact that an attack might have on V2C-enabled CAVs and how countermeasures

might be further developed as future work.

In summary, we make the following contributions:

• We introduce Grand Hack Auto, a novel threat analysis framework for cloud-based malware and

attacks that target CAVs (Sec. 5.4).

• We present HYDRA, the first V2C-focused synthetic malware, designed to exploit the V2C threat

model using the MQTT protocol (Sec. 5.5).

• We leverage both Grand Hack Auto and HYDRA to explore the V2C threat model for CAVs

and systematically threat-analyze the possible TTPs that it enables by systemically testing the

techniques documented in the Automotive Threat Matrix (ATM) [30] (Sec. 5.6.3).
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• Finally, we provide evidence of the robustness and realism of both Grand Hack Auto and HYDRA

by evaluating them on real-world enterprise IoT cloud infrastructure. Our evaluation results

confirm that our framework is robust and supports two cloud providers (Sec. 5.6.4).

In an effort to support open and reproducible science, Grand Hack Auto and HYDRA are open

sourced and available online1,2. As HYDRA is designed as an adversarial tool, we took ethical

considerations into account to make HYDRA open source which we explain in detail in Sec. 5.8.

5.2 Background

We start by providing relevant background topics on CAVs that will be referenced in later

sections: sandboxing (Sec. 5.2.1), V2C infrastructure (Sec. 5.2.2), the MQTT protocol (Sec. 5.2.3),

tactics, techniques and procedures (TTPs) (Sec. 5.2.4), and CAV threat models (Sec. 5.2.5).

5.2.1 Sandboxing

Sandboxing is a well-established security approach that isolates code execution within a con-

trolled and restricted environment to prevent unintended or malicious interactions with the host

system [25]. It has been widely used in the literature for analyzing potentially harmful software

without risking real-world assets or infrastructure. In the context of malware research, sand-

boxes provide a layer of protection, enabling repeatable and observable experiments on malicious

behaviors while ensuring system integrity [279].

Sandboxing is particularly relevant to Cyber-Physical Systems (CPS) such as CAVs, where

malicious code can impact both digital systems and physical operations and it has been used in the

context of Industrial Control Systems (ICS) [334] and space systems [279]. Without an isolated

testing environment, even synthetic malware could lead to safety hazards, or network propagation

during experimentation.

Finally, sandbox environments provide CTI valuable data that organizations, such as OEMs,

can use to develop and improve their systems’ security countermeasures and overall security stand-
1https://github.com/efrenlopezm/cav-sandbox-mqtt
2https://github.com/efrenlopezm/hydra-mqtt
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Figure 5.1
Basic MQTT network configuration for CAVs. In this example, a vehicle’s MQTT client
publishes some sensor data via a topic to the broker and then a cloud MQTT client subscribes to
this topic to get the sensor data. In the same way the cloud MQTT client publishes some
entertainment data to the broker and the vehicle’s MQTT client subscribes to the entertainment
topic to get the corresponding data.

ing [25]. These data may include malware behavior, network communication patterns generated

by the malware, and vulnerabilities the malware tries to exploit.

5.2.2 Vehicle-to-Cloud (V2C) Infrastructure

Vehicle-to-Cloud or V2C refers to the ability of a vehicle to connect and exchange data with

the cloud [335]. V2C infrastructure enables real-time data exchange, such as telemetry, sensor

data, and control commands between vehicles and centralized cloud systems, and ultimately allows

for a range of applications, including remote diagnostics and over-the-air (OTA) updates. V2C

depends on cloud platforms that provide on-demand storage, computational resources, and data

processing. These platforms enable CAVs to offload computationally intensive tasks (e.g., machine

learning inference) and access shared data from other vehicles and infrastructure. Major cloud

providers offer products specifically tailored for V2C, including Amazon AWS IoT Core [324],

HiveMQ [328], Azure IoT hub [336], and Google Cloud for Automotive [337]. Most of these cloud

platforms communicate with CAVs via the MQTT network protocol discussed in Sec. 5.2.3.
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Table 5.1
Comparison of Threat Models in Connected and Autonomous Vehicles (CAVs)

Aspect Intra-Vehicular Vehicle-to-Everything
(V2X)

Vehicle-to-Cloud (V2C)

Communication
Scope

Internal vehicle
networks (CAN, LIN,

FlexRay)

Nearby vehicles,
infrastructure,

pedestrians (DSRC,
C-V2X)

Remote cloud services
(MQTT, REST,
WebSockets)

Primary
Interface

Wired, internal Wireless, local
(short-range RF)

Internet-based (TCP/IP)

Adversary
Proximity

Physical access
(OBD-II, ECU)

Local proximity (radio
range)

Remote
(Internet-accessible)

Attacker
Capabilities

Physical presence,
access to internal bus,
reverse engineering

ECUs

RF hardware, proximity
spoofing tools, signal

jammers

Internet access,
compromised credentials,

cloud API or broker
exploitation

Example
Attacks

CAN injection, ECU
spoofing, diagnostics

abuse

Fake hazard alerts, GPS
spoofing, Sybil,

jamming

Command injection,
fleet-wide broker

compromise
Attack Scale One vehicle per attacker Multiple vehicles in

vicinity
Individual or fleet-wide

impact
Latency

Constraints
Real-time (ms-level) Low-latency,

safety-critical
Moderate-latency tolerated

Security Focus Message integrity, ECU
authentication

Secure message signing,
spectrum resilience

Broker hardening, topic
access control, data trust

5.2.3 MQTT Protocol

MQTT or Message Queuing Telemetry Transport is a lightweight publish/subscribe messaging

protocol for the Internet of Things (IoT) [338] that is ideal for connecting remote devices with

a small code footprint and network bandwidth. MQTT is used in multiple industries, including

automotive, and telecommunications. As featured in Fig. 5.1, the MQTT protocol architecture

includes three main elements:

• MQTT Broker. Brokers are intermediary servers that route messages between clients. Brokers

keep track of subscriptions and publishing messages to subscribed clients and are deployed in the

cloud or on-premises and can be scaled to support millions of devices and messages per second.

• MQTT Client. Clients publish or subscribe to messages to the broker. A client can publish a
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message to a topic, which is a logical channel to which the message is sent. Subscriber clients

receive messages that are published to a topic. Clients can also act as both a publisher and a

subscriber.

• MQTT Topic. An MQTT topic is a filter the broker uses to deliver messages. The broker

filters all connected clients according to their subscriptions and forwards the message to these

subscribers. Clients identify the messages to which they want to receive by subscribing to a

particular topic.

Finally, MQTT includes two optional security mechanisms: authentication and encryption [329].

Authentication is achieved using a username and password that each client must send to the broker.

However, these credentials are sent as plain text. In order to encrypt all communication including

authentication credentials, MQTT uses TLS. However, TLS encryption is not always feasible for

devices with limited resources [339].

Despite these security features being built-in, they are not always configured correctly. For

example, as of February 2025, using the Shodan search engine reveals half a million IoT devices

running MQTT’s unencrypted TCP port 18833.

5.2.4 Connected and Autonomous Vehicles’ Tactics, Techniques and Procedures (TTPs)

Tactics, Techniques, and Procedures (TTPs) describe the behavior of a malicious actor in a

structured way to understand how they can execute an attack [309, 310]. TTPs are commonly

presented as matrices. There are many such matrices according to the type of system they describe.

For example, there are matrices for enterprise systems [32], industrial control systems [283], and

space systems [340]. In this work, we leverage the Automotive Threat Matrix (ATM) which

includes automotive-specific adversary TTPs based on real-world observations and automotive

exploit research [30]. The ATM matrix lists and describes 13 vehicle security-specific tactics and

techniques such as the Affect Vehicle Function tactic, which refers to adversaries trying to affect

vehicle functions and systems, i.e., movement control, audio, and displays. Each tactic may include
3https://www.shodan.io/search?query=mqtt+port%3A1883&page=3
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several different techniques, for example, the Internet Communication technique occurs when an

adversary can use a compromised Electronic Control Unit (ECU) (embedded system in a vehicle

that processes sensor data sends commands to actuators.) internet connection for command and

control and data exfiltration [30].

5.2.5 Established CAV Threat Models

Security research in CAVs has primarily focused on two well-known threat surfaces: the

intra-vehicular network and external communication with nearby entities also known as vehicle-

to-everything (V2X), which have guided security research for many years. Table 5.1 provides a

high-level comparison of these threat models which we now discuss.

• Intra-vehicular Threat Model. The intra-vehicular threat model is best represented by the

Controller Area Network (CAN) bus, which as the backbone of intra-vehicular communication,

enabling ECUs to exchange real-time messages for controlling physical functions such as braking,

acceleration, and steering. The canonical threat model assumes adversaries gains physical or

logical access to the CAN bus via an OBD-II port, a compromised ECU, or a remote attack

chain [341]. The intra-vehicular threat model can be further divided between the Conventional

Remote Attacker Model (CRAM) and the Enhanced Remote Attacker Model (ERAM) [323].

• Vehicle-to-Everything (V2X) Threat Model. V2X encompasses communication between the

vehicle and nearby infrastructure, and other vehicles, typically over Dedicated Short-range Com-

munications (DSRC) or Cellular-V2X protocols [342]. The V2X threat model allows adversaries

to inject or intercept messages in the wireless domain, create phantom vehicles, or exploit timing

vulnerabilities.

While these threat models have received extensive attention, emerging communication channels

between vehicles and cloud service, e.g., V2C, have not been systematically analyzed, despite

growing reliance on cloud-based functionality in modern CAV systems [327].
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5.3 Our Focus: Vehicle-to-Cloud Threat Model

We now define the threat model on which this work focuses: the V2C threat model. This

threat model has become a reality due to the increasingly connectivity between CAVs and cloud

infrastructure discussed in Sec. 5.1. This threat model assumes that the target CAV(s) already

implements a V2C communication protocol such as MQTT, for example some BMW CAVs already

do this [327]. This is relevant as having an existing MQTT implementation helps any MQTT-based

malware or adversary to stealthily operate, because the malicious traffic will use the same ports as

the legitimate MQTT process. The CAV communicates with a cloud server, e.g., an MQTT broker,

either on an encrypted or unencrypted channel and sends data such as GNSS latitude and longitude,

speed or acceleration. Finally, the cloud server or broker consumes the data sent from the CAV,

for example it can consume the GNSS data to show nearby gas stations. The cloud server can also

send data and commands to the CAV. For example, it can send warnings if the CAV is going over

the speed limit and can send commands to the CAV such as a throttle command if the CAV’s speed

reaches dangerous levels.

We further divide this threat model into two different scenarios. These scenarios are illustrated

in Fig. 5.2:

• Scenario 1: Compromised Legitimate Cloud Infrastructure. In this scenario, the CAV

establishes a connection with a legitimate cloud broker, such as a HiveMQ-hosted MQTT service.

The CAV is properly configured and uses the intended broker; however, the broker’s infrastructure

has been compromised. The attacker may have obtained valid credentials, or gained insider

access to the cloud environment which often happens [343]. Common vulnerabilities that could

enable this scenario include misconfigured access controls (e.g., public-facing brokers without

authentication), overly permissive topic access policies, unpatched MQTT broker software with

known vulnerabilities, or the exposure of weak or hardcoded API keys and tokens used to

authenticate broker access. Additional risks include improper multi-tenancy isolation, where one

customer’s misconfiguration or breach may expose others’ data, and insider threats, where an
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Figure 5.2
The two threat model scenarios considered for Grand Hack Auto. 1⃝ the target CAV communicates
with a legitimate cloud provider that has been compromised. 2⃝ the target CAV communicates
with a malicious MQTT client running on a C2 infrastructure controlled by an attacker.

employee or contractor with broker admin access.

• Scenario 2: Malicious Cloud Infrastructure. In this scenario, the CAV connects to a broker

that is fully controlled by the attacker. This may occur due to misconfiguration, DNS spoofing, or

exploitation of CAV software vulnerabilities. A specific example would be an attacker that exploits

vulnerabilities in the CAV’s MQTT client implementation allowing them to inject new broker

configurations or redirect communication flows at runtime without changing static configurations.

The attacker sets up a rogue MQTT broker that impersonates a trusted service or leverages

permissive client settings that allow arbitrary broker connections. This scenario has already been

documented in the Industrial Control Systems (ICS) domain [344].

5.4 Grand Hack Auto: A Threat Analysis Framework for V2C

As mentioned in Sec. 5.2.1, sandboxes are an effective way of analyzing malware behavior

because they provide a realistic, isolated environment that stops the malware from affecting other

systems or hosts. However, the level of realism that a particular sandbox provides varies depending
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Figure 5.3
Grand Hack Auto framework architecture. The framework leverages the CARLA simulator 1⃝
which generates a world where the vehicles move and each vehicle has sensors (e.g. GNSS)
attached to them. Each vehicle uses the CARLA API 2⃝ to send and receive data to its own
MQTT client 3⃝. All the vehicles’ MQTT clients connect to a malicious broker which can be
local or cloud-based 4⃝ and this broker is connected to the malware 5⃝ that exploits the multiple
features of our analysis framework.

on the malware itself. Because of this, CPS virtual sandboxes have become popular [334, 345] as

they allow us to monitor the malware’s behavior and its impact on the physical process.

5.4.1 Design Objectives

With that in mind, Grand Hack Auto is designed to achieve the following objectives:

• (DG-1) Isolation. Grand Hack Auto must be completely isolated from any other network so that

any unknown or unforeseen malware behavior does not affect other systems.

• (DG-2) Modularity. Grand Hack Auto must be modular so that different modules can be

attached and detached depending on the requirement. This allows for extensibility to analyze

future malware.

• (DG-3) Network Traffic Capture. Grand Hack Auto must provide a network traffic capture

capability so that the malware behavior can be studied using network forensics.

• (DG-4) Logging. Grand Hack Auto must provide built-in logging capabilities so that the

interactions between the sandbox and the malware to be analyzed can be logged into organized

and easy to analyze data.
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• (DG-5) Secure Coupling. Grand Hack Auto must allow easy integration and separation of

infected or malicious applications.

• (DG-6) Physical CAV Simulation. Grand Hack Auto must provide a realistic simulation of

connected vehicles so that the malware can consume realistic data and the real-world consequences

of the malware payload can be observed.

5.4.2 Implementation

Based on the aforementioned design principles, Fig. 5.3 depicts the high-level architecture of

Grand Hack Auto, which are described as follows:

• Physical Simulation Module. The physical simulation replicates the required elements found in

the CAV environment, including the CAVs themselves, traffic lights, and roads. The simulation

is capable of simulating or “spawning” multiple CAVs so that the interactions between them are

analyzed. The simulation provides important data points related to each CAV, for example, GNSS

coordinates, acceleration and velocity. We implemented the physical CAV simulation leveraging

the CARLA simulator [346] and writing a CARLA client application that spawns one or more

vehicles. Each vehicle has a GNSS sensor attached to generate GNSS data and each vehicle

has an independent MQTT client that continuously draws sensor data such as acceleration and

velocity. The CARLA client application was implemented in Python using CARLA’s Python

API. This module follows DG-2 and DG-6 design objectives.

• MQTT Clients Module. The MQTT clients are the clients that are attached to each of the CAVs

spawned in the physical simulation. These clients publish data generated from each simulated

CAV to the broker and subscribe to topics to receive data.

We implemented vehicles’ MQTT client in Python using the CARLA API [347] and the Eclipse

Paho MQTT package [348]. This was done from scratch as CARLA does not include built-

in MQTT support. The client includes a predefined set of commands that are then translated

to the local vehicle commands. For example, the remote command ”break” is translated to
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”throttle=0.0 brake=1.0” for the CARLA API. However, this predefined set of commands can

be updated dynamically by communicating with the malicious broker. We implemented this by

having the client subscribe to a special topic called ”update”. This allows the client to download

new payloads from the malicious broker. This module follows DG-2 design objective.

• MQTT Broker Module. The MQTT broker publishes the cloud data discussed in Sec. 5.2.2

to the CAVs. Additionally, the broker is vulnerable malicious activities as it can be used by a

malicious MQTT client or malware to communicate with the CAV as we discussed in Sec. 5.3.

We implemented the malicious MQTT broker using Eclipse Mosquitto [349] and created a

configuration file to customize the broker to support local or cloud connections. This module

follows DG-2 and DG-6 design objectives.

• Malware Module. This module hosts the malware that is being analyzed and that will interact

with the rest of the sandbox. Because there has not been any documented CAV or V2C malware,

in this module we host our synthetic malware HYDRA, which we discuss in Sec. 5.5. In order

to isolate each part of the sandbox we used two sandboxing layers [279], first a virtual machine

(VMWare) and containerization (Docker). To facilitate the network traffic capture we leveraged

Docker’s networking features to route all sandbox traffic through a virtual network interface. This

interface can be used by network forensic tools such as Wireshark for further analysis. Finally,

logging was implemented using a Python class that logs the sandbox’s relevant data including

acceleration, speed, x and y positions, GNSS latitude and longitude and latency. Each data is

organized as a CSV file for each of the vehicles in the simulation. This module follows the D-1,

DG-2, DG-3, DG-4, DG-5 and DG-6 design objectives.

5.5 HYDRA: A Synthetic Malware for V2C

Synthetic malware has been used as an alternative to understand how a specific system might

be affected and what countermeasures can be developed to mitigate such attacks. For example,

PLCinject is an offensive tool that injects Siemens’ Programmable Logic Controller (PLC) mal-
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Figure 5.4
HYDRA synthetic malware’s architectural design.

ware [350], LogicLocker is a synthetic ransomware designed for PLCs [169], and IronSpider is a

synthetic malware that targets webserver vulnerabilities in PLCs [216].

However, to the best of our knowledge, there is no documented real-world malware that specif-

ically targets CAVs. To address this, we now present the design considerations as well as the

architectural implementation of HYDRA, the first synthetic malware for V2C-enabled CAVs.

5.5.1 Design Objectives

There are some examples of real-world malware that target similar types of CPS that may give

us an idea of how a CAV-specific malware might look like:

IOCONTROL [344] is a malware that targets Supervisory Control and Data Acquisition

(SCADA) devices including PLCs to execute commands such as arbitrary code execution, port

scan, and more. IOCONTROL achieves these capabilites by communicating with a Command &

Control (C2) server over MQTT. [344]. Conversely, PIPEDREAM [351] is a “Swiss army knife”

malware that includes tools for reconnaissance, manipulation, and disruption of PLCs. These

tools can scan for new devices, brute force passwords, sever connections, and then crash the target

device. PIPEDREAM even provides adversaries with an interface for manipulating the targeted
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Algorithm 1 Crash Coordinator
1: Initialize empty map positions to store car states
2: for each telemetry message received do
3: Extract car ID from topic
4: Parse and store (𝑥, 𝑦, 𝑦𝑎𝑤) in positions[car id]

5: end for
6: if positions received from all cars then
7: Compute crash point:
8: 𝑥crash =

1
𝑁

∑𝑁
𝑖=1 𝑥𝑖

9: 𝑦crash =
1
𝑁

∑𝑁
𝑖=1 𝑦𝑖

10: for each car do
11: Compute desired yaw toward crash point
12: Calculate yaw error and steering
13: Set throttle based on steering angle
14: Choose command (e.g., forward, left, right)
15: Publish control command to MQTT
16: end for
17: end if

devices [351].

Following this, the design objectives of HYDRA are:

• (DH-1) Modularity. HYDRA must be modular so that different adversarial tools, e.g., reconnais-

sance tools, can be integrated to implement multiple techniques used in the V2C threat model

and that can be tested on Grand Hack Auto.

• (DH-2) Support V2C Protocol. HYDRA must support a V2C network protocol, specifically

MQTT, as it is used in real-world CAVs and cloud servers.

• (DH-3) CAV-specific Attacks. HYDRA must make use of the V2C threat model to implement

malicious tools that are specifically designed for CAVs. For example a coordinated multi-vehicle

collision attack.

5.5.2 Implementation

We implemented HYDRA using Python and the Paho MQTT library [348]. The implementation

features modular classes so that new tools can be added or removed from the toolkit. Architecturally,
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as depicted in Fig. 5.4, HYDRA has two main components based on the aforementioned design

objectives:

Malicious Broker. The malicious broker acts as a Command & Control server and is capable

of subscribing and publishing to the malicious client. When subscribing, the broker automatically

saves the exfiltrated data published by the client and when acting as a publisher, the broker sends

commands to the client. The logic of these commands are implemented in the toolkit. This module

follows DH-1 and DH-2 design objectives.

Toolkit. HYDRA’s toolkit is designed as a modular command line application that includes

multiple tools that implement different techniques which are based on the ATM matrix discussed

in Sec. 5.2.4. The current design includes the following five modules:

• Denial of Service (DoS) Module: This module is designed to overwhelm the CAV’s MQTT client

with a high volume of requests in a short time period of time to disrupt the legitimate MQTT

mobility services operation. This module implements the TTP Denial of Service on Vehicle

Function technique, and was implemented by rapidly opening a large number of connections,

each with a unique MQTT client ID, thus leading the broker to allocate a session state for each

client, leading to the Denial of Service [352]. This module follows DH-1 and DH-2 design

objectives.

• Crash Coordinator Module: This module orchestrates coordinated multi-vehicle collisions within

Grand Hack Auto, and is designed to emulate a malicious actor who gains control over multiple

CAVs and manipulates their trajectories to converge at a given crash point. This is designed to

implement the TTP Affect Vehicle Function tactic. To implement this module, it first passively

listens to telemetry data from multiple vehicles over MQTT. The module continuously receives

position and orientation information (e.g., x, y, yaw) published by each vehicle specifically, from

topics such as /vehicle1/telemetry/yaw and computes a crash point based on the average location

of all participating vehicles. Using this target point, the system calculates individualized steering

and throttle commands that guide each vehicle toward the crash point. These control commands
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are then published to vehicle-specific MQTT control topics, for example /vehicle1/command.

Algorithm 1 sequentially describes these steps. This module follows DH-1, DH-2 and DH-3

design objectives.

• Command & Control (C2) Module: This module is designed to both exfiltrate or infiltrate data

from/to the CAV MQTT client topics. Additionally, it sends commands to the CAV via the

malicious MQTT broker. The C2 module allows HYDRA to send commands such as “break”

to force a vehicle to change its speed dramatically, potentially causing harm to the vehicle and

its passenger(s). This module is designed to implement the TTP Command and Control tactic

and was implemented by allowing structured control messages to be sent from the cloud to a

connected autonomous vehicle (CAV) via MQTT. Commands are formatted as JSON objects and

include a timestamp to emulate real-time interactions. These messages are published to relevant

MQTT topics, such as those responsible for vehicle control, and may contain instructions like

throttle adjustments, for example the /vehicle/control topic. This module follows DH-1, DH-2

and DH-3 design objectives.

• Spoof Module: This module sends spoofed messages disguised as if they came from a legitimate

cloud service. The goal is to deceive the recipient (either the vehicle or the cloud) into accepting

and acting on the messages as if they were authentic. For example, sending a spoofed GNSS mes-

sage. This module implements the TTP Defense Evasion tactic and was implemented by creating

a fake or “spoofed” topic that publishes malicious data, for example the /vehicle/sensors/gnss

topic. The HYDRA broker then publishes data in JSON format with fake GNSS coordinates.

This module follows DH-1, and DH-2 design objectives.

• Reconnaissance Module: This module implements the TTP Network Service Scanning technique

and is designed to scan the network for available MQTT clients and brokers and enumerate them.

Additionally, it discovers the available topics so that HYDRA can subscribe to them. The recon

module includes two tools, the topic listener and the broker enumerator. The topic listener is

designed to discover all the MQTT topics in a particular network. Discovering the available
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topics is important because they reveal the type of data being transmitted between a client and

a broker. For example, if a topic called “vehicle/gnss” is discovered, subscribing to it might

reveal the GNSS data from a particular vehicle. The topic listener was implemented to passively

discover active MQTT topics by subscribing to all available topics using the wildcard subscription

pattern “#” [353]. After registration, it configures the MQTT client to listen to every message

published on the broker. This approach enables HYDRA to perform reconnaissance of MQTT

topic namespaces without prior knowledge of topic names.

The broker enumerator lists the available brokers in a given network and shows several details of

the MQTT implementation running on them, for example, the MQTT version, QoS support and

uptime. This information is important so that further attacks or exploits can be crafted based on

this initial recon information.This tool was implemented to try to connect to the most common

MQTT ports including 1883, 8883, 9001 and the special SYS-Topics which are special meta

topics that an MQTT broker can use to publish information about the broker itself and its MQTT

client sessions [353]. This module follows DH-1, and DH-2 design objectives.

5.6 Evaluation

We now evaluate both Grand Hack Auto and HYDRA by first laying out the experimental

questions we investigate (Sec. 5.6.1), and then performing three sets of experiments (Sec. 5.6.2,

Sec. 5.6.3, Sec. 5.6.4).

5.6.1 Experimental Questions

Q-1 What is the impact of V2C-based malware on decision-making for CAVs and its physical

effects?

As CAVs are Cyber-Physical Systems (CPS), cyberattacks targeting them can have physical, real-

world consequences for the CAV themselves and their environment. As such, we are interested

in exploring the possible physical consequences of abusing the V2C threat model. This research

question is addressed in Sec. 5.6.2.
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Q-2 What are the TTPs that Grand Hack Auto and HYDRA support in the context of the V2C

threat model?

Since Grand Hack Auto and HYDRA were developed to investigate the V2C threat model, we are

interested in systematically analyzing the threats that such a model enables. As such, we provide

a structured, realistic view of how adversaries can exploit the V2C threat model using the TTPs

and mapping attacker behavior across multiple stages of a V2C attack, such as reconnaissance,

initial access, command and control. This research question is addressed in Sec. 5.6.3.

Q-3 Are Grand Hack Auto and HYDRA robust enough to operate on a real-world enterprise

cloud infrastructure?

As this work focuses on the V2C threat model, we are interesting in experimenting weather

Grand Hack Auto and HYDRA are robust enough to handle real-world cloud environments, such

as HiveMQ, discussed in Sec. 5.2.2. This research question is addressed in Sec. 5.6.4.

5.6.2 Physical Impact Experiments

Motivation. In order to demonstrate the physical consequences of abusing the V2C threat

model, we conducted two experiments that affect the physical behavior of one or more CAVs

in Grand Hack Auto: a remote acceleration and breaking attack and a coordinated multi-vehicle

collision attack. The goal of the remote acceleration and braking attack is to disrupt the operation of

a single vehicle by remotely injecting drive commands over the V2C channel. The second attack,

coordinated multi-vehicle collision, demonstrates the potential of a more complex adversarial

behavior involving multiple CAVs. By manipulating the MQTT telemetry and control data across

several vehicles, the attacker can steer them into converging paths, triggering a deliberate crash,

showing how V2C channels can be leveraged to orchestrate collisions.

To carry out these attacks, the attacker must have network-level access to the MQTT broker,

this could be because of misconfigurations (e.g., unauthenticated brokers), or insider access as

discussed in Sec. 5.3. Additionally, the vehicles must be subscribed to control topics or accepting

drive commands from cloud brokers, for example, a compromised legitimate broker as shown in
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Fig. 5.2. These assumptions are supported by the fact that, as we discussed in Sec. 5.1, the vast

majority of MQTT deployments are insecure either because they are unencrypted, or improperly

configured.

We implemented these two attacks as they abuse the V2C threat model to perform attacks that

create dangerous situations for the vehicle’s passengers and any pedestrians. These underscore

the potential consequences of exploiting the V2C threat model and the necessity for experimental

environments to test and analyze these types of attacks.

Methodology. We deployed both Grand Hack Auto and HYDRA inside a VM with Ubuntu

20.04.6 LTS, 16 GB RAM, and 4 vCPUs. Using our Grand Hack Auto configuration file, we

configured each vehicle MQTT client to connect to the local network broker on port 1883. After

establishing connectivity between Grand Hack Auto and HYDRA, we launched both the remote

acceleration and breaking and a coordinated multi-vehicle collision attacks.

In the remote acceleration and braking attack scenario, we sent two unauthorized messages

using HYDRA to our sandbox, one to force the vehicle to accelerate and another one to brake

unexpectedly.

In the coordinated multi-Vehicle collision attack. we leveraged HYDRA’s Crash Coordinator

module discussed in Sec. 5.5. Before launching the attack, we used the topic listener tool discussed

in Sec. 5.5.2 to identify the available vehicles and their topics. After this, we configured the

crash coordinator module with two vehicles’ topics and ran it. The Crash Coordinator ran as a

background service within HYDRA and subscribed to the previously defined telemetry topics to

gather the required data, vehicle’s location (x, y) and orientation (yaw). Upon receiving this data,

the Crash Coordinator calculated the centralized crash point and finally published the resulting

commands to each vehicle’s MQTT control topic /vehicle1/control. These control messages are

consumed by Grand Hack Auto, which applies them directly to the CARLA vehicle interface,

resulting in coordinated motion toward the calculated impact location.

Results.

The results of the remote acceleration and braking attack are depicted in Fig. 5.5. The
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Figure 5.5
Remote command attack example that showcases the effects of the malicious MQTT command on
the speed and acceleration of a CAV.

commands were successfully sent from HYDRA’s C2 module and caused the vehicle in Grand

Hack Auto to first accelerate rapidly and then break suddenly. This attack which may lead to

collisions, and endanger the vehicle’s passenger or pedestrians.

The results of the coordinated multi-vehicle collision attack. are depicted in Fig. 5.6. HYDRA’s

crash coordinator module successfully orchestrated the crash between two vehicles in Grand Hack

Auto by sending a series of acceleration and steering commands. These eventually led to both

vehicles crashing at the crash point shown in Fig. 5.6.

The results from both attacks provide evidence of the impact that V2C-based malware, i.e.,

HYDRA, can have on decision-making processes in CAVs and their corresponding physical effects.

Together, these experiments reveal that V2C-based malware poses a direct threat to both individual

vehicle autonomy and broader traffic safety, thus providing strong evidence towards answering Q-1.

98



70 69 68 67 66 65 64 63 62
X Position (m)

24

26

28

30

32

34

Y 
Po

sit
io

n 
(m

)
Car Boxes Offset -2.5m from Crash Point

Car 1 Trajectory
Car 2 Trajectory
Car 1 End
Car 2 End
Car 1 Center
Car 2 Center
Crash Point

Figure 5.6
2D trajectory plot of two vehicles in a coordinated collision scenario.

5.6.3 Systematic Threat Analysis

Motivation. Understanding the range of TTPs that Grand Hack Auto supports is essential for

evaluating its effectiveness to analyze V2C threats. The goal of this experiment is to assess and

quantify which techniques Grand Hack Auto and HYDRA can support within the V2C threat model

as defined by the ATM matrix [30].

Methodology. Using the same environment as we did in Sec. 5.6.2, we leveraged HYDRA to

evaluate the TTPs that Grand Hack Auto supports. We systematically tested each one of HYDRA’s

tools (Sec. 5.5) and matched them to their respective technique. We executed each HYDRA module

within Grand Hack Auto using Docker containers to carry out V2C-based attacks. The objective

of each experiment was to verify whether the corresponding TTP from the Automotive Threat

Matrix could be effectively reproduced within Grand Hack Auto. Each experiment was successful

if Grand Hack Auto demonstrated the ability to deliver the intended physical or logical effect of the
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ATM Matrix Tactics Grand Hack Auto
Supported Techniques

Manipulate Environment 3
Initial Access 0
Execution 0
Persistence 0
Privilege Escalation 0
Defense Evasion 0
Credential Access 1
Discovery 5
Lateral Movement 0
Collection 1
Command & Control 1
Exfiltration 1
Affect Vehicle Function 2
Reconnaissance 1

Total 15

Table 5.2
Tactics and techniques supported by Grand Hack Auto compared to the ones included in the
Automotive Threat Matrix (ATM).

attack (e.g., vehicle acceleration). Additionally, each module’s behavior was evaluated to ensure

fidelity to the semantics of the corresponding ATM technique, thus validating that Grand Hack

Auto accurately supports the techniques.

Results. We successfully tested and completed attacks using HYDRA’s five modules which

account for 15 techniques. Table 5.3 lists every technique covered and how it corresponds to our

results. To determine this correspondences we used the descriptions of each of the techniques

as stated in the ATM matrix. For example, HYDRA’s broker enumerator module corresponds to:

Process Discovery, as it allows “Adversaries to attempt to get information about running processes

on a system” as shown in Listing 5.1.

Our findings reveal that a wide range of TTPs are not only feasible in a connected vehicle
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�
TC-1: $ hydra.py --ip 127.0.0.1 --broker-enum --verbose

TC-2: Starting MQTT reconnaissance on 127.0.0.1:1883

TC-3: Enumerating broker information...

TC-4: Scanning for open MQTT-related ports...

TC-5: Open MQTT port detected: 1883

TC-6: Open MQTT port detected: 9001

TC-7: Connected with result code 0

TC-8: BrokerEnumerator connected. Attempting to gather more details...

TC-9: Broker Info: $SYS/broker/version -> mosquitto version 2.0.20� �
Listing 5.1
Sample output from HYDRA’s broker enumerator feature
which is part of the recon module.

context but can also be executed using lightweight messages through a standard MQTT broker.

The experiments validate that Grand Hack Auto, coupled with synthetic malware like HYDRA,

is an effective platform for studying cyber-physical impacts of vehicular threats, thus providing

convincing evidence towards answering Q-2. Moreover, this TTP-based evaluation can serve

as a foundation for future work in intrusion detection, risk assessment, and the development of

countermeasures focused on vehicle-to-cloud attack surfaces.

5.6.4 Cloud Integration Experiment

Motivation. To evaluate the realism and adaptability of Grand Hack Auto in real-world,

operational environments, we integrated it with two real-world cloud-based MQTT brokers. First,

we selected HiveMQ Cloud [328], a popular enterprise IoT cloud platform that provides on-demand,

MQTT broker deployments. Second, we selected Eclipse Mosquitto [349], an open-source broker

implementation of the MQTT protocol that has been used by enterprise applications such as Cisco’s

Splunk [354] and IBM App Connect Enterprise [355].

Experiment Description. We deployed Grand Hack Auto and HYDRA on the same environment

as Sec. 5.6.2, however, for this experiment we configured each vehicle MQTT client to connect to

the HiveMQ and Mosquitto cloud servers on port 1883. After establishing the cloud connectivity

between Grand Hack Auto and HYDRA, we evaluated a crash coordinator scenario involving two

vehicles across across three different brokers: HiveMQ, Mosquitto and the local network broker.
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Table 5.3
Evaluation of TTPs from the Automotive Threat Matrix using the CAV Sandbox

ATM Tactic ATM Technique HYDRA Module Scenario Sandbox Outcome

Manipulate Environ-
ment

Downgrade to Inse-
cure Protocols

Initiated an unencrypted MQTT
session on port 1883

Packet capture reveals plain
text traffic from vehicles

Manipulate Environ-
ment

Jamming or Denial of
Service

Used DoS module to overwhelm
MQTT client

Vehicles’ MQTT client un-
able to send or receive data

Manipulate Environ-
ment

Manipulate Commu-
nications

Used Spoof module to manipu-
late GNSS data

Vehicles’ GNSS data is in-
correct

Credential Access Network Sniffing Initiated a packet capture from
malicious broker to sniff topic
data

Vehicle’s owner data is
leaked

Discovery Location Tracking Used topic listener tool to gather
GNSS data and track location

Vehicle’s location is com-
promised

Discovery Network Service
Scanning

Used broker enumerator to dis-
cover the current MQTT version

Vehicle’s MQTT service is
disclosed

Discovery Process Discovery Used broker enumerator to dis-
cover the MQTT process

Vehicle’s MQTT process is
disclosed

Discovery System Information
Discovery

Used broker enumerator to dis-
cover the MQTT uptime and ver-
sion

Vehicle’s MQTT uptime is
disclosed

Discovery System Network
Connections Discov-
ery

Used broker enumerator to dis-
cover the MQTT number of con-
nections

Vehicle’s MQTT connec-
tions discovered

Collection Network Sniffing Initiated a packet capture from
malicious broker to sniff topic
data

Vehicle’s data is compro-
mised

Command and Con-
trol

Internet Communica-
tion

Use C2 module to send com-
mands to vehicles

Vehicle receives malicious
commands to accelerate or
break

Exfiltration Internet Communica-
tion

Used topic listener to read and
save telemetry data

Vehicle’s data is exfiltrated

Affect Vehicle Func-
tion

Denial of Service on
Vehicle Function

Used DoS module to overwhelm
MQTT client

Vehicle cannot receive
neccesary data to perform
fnctions

Affect Vehicle Func-
tion

Abuse Standard
Diagnostic Protocol
for Affecting Vehicle
Function

Used crash coordinator module
to affect vehicle’s function

Vehicle’s function fails and
causes a crash

Reconnaissance Gather Target Infor-
mation – from Vehi-
cle

Used Reconnaissance module to
gather data such as software de-
tails

Vehicle’s data is compro-
mised

Results. Our initial Grand Hack Auto implementation was tested on a local network broker,

however, in order to support live HiveMQ and Mosquitto cloud servers we had to modify both

Grand Hack Auto and HYDRA. Specifically, we had to handle multiple MQTT options including

Quality of Service (QoS) and topic string encoding. These upgrades allowed for Grand Hack Auto

to correctly support these enterprise cloud brokers.
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Figure 5.7
Latency comparison between the local network broker and two cloud brokers, HiveMQ and
Mosquitto.

Grand Hack Auto successfully maintained stable connections to both cloud brokers, demon-

strating interoperability with commercial MQTT cloud services. As expected the latency for both

HiveMQ and brokers was higher than the local network’s as can be seen in Fig. 5.7. The HiveMQ

latency average was 0.236 seconds while the Mosquitto latency was 0.278 seconds, however, the

HiveMQ latency spiked considerably at 1.399 seconds while Mosquitto maintained a relatively

stable latency with the maximum value recorded at 0.416 seconds.

However, Grand Hack Auto was resilient enough to handle these fluctuations without break-

downs in behavior or connectivity.

These results answer Q-3 and indicate that Grand Hack Auto and HYDRA are indeed robust
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Table 5.4
Comparison of Related Work to Grand Hack Auto

System Type Security
Focus

V2C Focus Enterprise
Cloud

Support

Open
Source

Wang et al. [356] Digital Twin ✗ ✓ ✗ ✗

Chunheng et al. [345] Sandbox ✓ ✗ ✗ ✗

High Mobility [357] Sandbox ✗ ✗ ✓ ✗

Simutack [358] Simulation ✓ ✗ ✗ ✓
Grand Hack Auto Sandbox ✓ ✓ ✓ ✓

enough to operate on real-world enterprise cloud infrastructure and are not limited to local testing

environments.

5.7 Discussion

In this section we discuss comparisons with previous work (Sec. 5.7.1), and the limitations of

our approach (Sec. 5.7.2).

5.7.1 Related Work

Table 5.4 provides a comparison between our approach and previous works in the literature.

More specifically, Grand Hack Auto and HYDRA can be further compared with previous approaches

as follows:

Wang et al. introduced a vehicle digital twin focusing in V2C that synchronizes the data from

real-world vehicles to a cloud-based digital twin [356]. Although this work implements V2C, it is

used for a different purpose. Specifically, the V2C infrastructure is used to synchronize and save

the digital twin whereas Grand Hack Auto uses V2C as part of its threat model.

The Cloud-based Sandbox is used to detect the false data injection attacks on CAVs [345]. This

sandbox was implemented using Matlab and VISSIM, a traffic simulation environment. However,

this approach does not include any network protocol implementation or the physical simulation of

the CAVs’ sensors.

High Mobility’s Sandbox includes a car simulator that exposes vehicle data via an API. Prac-

titioners can draw data from it for different purposes, for example, data analytics via the MQTT
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protocol [357]. However, High Mobility’s sandbox does not include any security features and it is

focused on vehicle sensor data analysis. Additionally, it is available only as a commercial product

with no trial version.

Simutack is an open-source attack simulation framework [358] that generates realistic attack

scenarios for automotive security testing and it is built leveraging three existing simulation frame-

works, CARLA [347], SUMO [359] and OMNeT++ [360]. Simutack provides attack scenarios

focused on intra-vehicular and V2X networks.

5.7.2 Limitations

Currently, our framework leverages the CARLA simulator for the physical process simulation.

However, CARLA does not simulate the CAV intra-vehicular hardware and software and thus

it is not possible to analyze low-level malware using our framework. This limitation could be

overcome by extending the CARLA simulator to include intra-vehicular simulations. Nevertheless,

as mentioned in Sec. 5.3, Grand Hack Auto is focused on the V2C threat model and not on the

intra-vehicular networks such as a controller area network (CAN) [323].

Another limitation is that our approach only supports one V2C protocol at the moment: MQTT.

We selected MQTT as it is the de facto standard for V2C communications, as we discussed in

Sec. 5.1. Having said that, as Grand Hack Auto is highly modular, additional protocols such as

WebSockets [361] could be added in the future.

5.8 Ethical Considerations

In this dissertation chapter we presented HYDRA, an offensive tool designed to simulate malware

behaviors in V2C systems for the purpose of advancing research on threat modeling for connected

autonomous vehicles (CAVs). We are committed to conducting and disseminating research while

adhering to ethical standards and responsible disclosure practices. For this, we referenced the

USENIX Security ’25 Ethics Guidelines [362]. In accordance with such guidelines, we assessed

the dual-use nature of our work. While HYDRA emulates adversarial behavior, it is explicitly

designed for use in controlled simulation environments, i.e., Grand Hack Auto, and does not target

real-world vehicle firmware.
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Additionally, we disclose and point out the adversarial nature of HYDRA by including the

following warning message every time the malware is used: “WARNING: This tool is intended

for RESEARCH and EDUCATIONAL purposes only. Unauthorized deployment on live or produc-

tion systems is strictly prohibited. Use responsibly and ensure compliance with local laws and

regulations.”

Finally, HYDRA’s source code is released in the interest of transparency, reproducibility, and

community contribution and we welcome collaboration and feedback from the community to ensure

this tool is used ethically and constructively.

Transitioning from the simulated environment of Grand Hack Auto and synthetic malware like

HYDRA to real-world CAV security assessment would present significant technical and regulatory

challenges beyond the ethical concerns addressed in the paper. Technically, the lack of access to

proprietary vehicle firmware, ECU interfaces, and production-grade V2C configurations makes it

difficult to replicate attacks on physical vehicles. From a regulatory standpoint, testing on live

vehicles may violate legal restrictions on vehicle tampering and pose safety risks. Additionally,

targeting enterprise IoT brokers, such as HiveMQ, for testing purposes could breach provider terms

of service and impact shared infrastructure. Overcoming these hurdles would require collaboration

with OEMs, the use of controlled testbeds, and adherence to formal safety and legal frameworks

for real-world experimentation.

5.9 Chapter Conclusion

In this dissertation chapter, we presented Grand Hack Auto, a framework for simulating and

analyzing V2C threats on CAVs, and HYDRA, the first synthetic malware targeting the V2C

threat model. Through systematic experimentation using real-world IoT cloud platforms, we

demonstrated that Grand Hack Auto can realistically emulate CAV behavior and that HYDRA can

effectively implement a variety of TTPs, including complex attacks such as coordinated multi-

vehicle collisions. By open-sourcing our tools, we hope that other researchers can extend both

Grand Hack Auto and HYDRA to continue research and the development of countermeasures that

can secure CAVs. For future work we plan to investigate countermeasures for securing dynamic
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command update channels in V2C systems, for example, using methods such as authentication, and

policy enforcement mechanisms for MQTT topics.
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CHAPTER VI: CONCLUSION AND FUTURE WORK

This dissertation addressed critical challenges in CTI for CPS by introducing the concept of

CTI-for-CPS, which was applied through three new methodologies to improve the collection and

processing phases of the CTI life cycle. The research targeted three representative domains of

CPS: industrial control systems (ICS), satellite systems, and connected and autonomous vehicles

(CAVs), each of which is vital to the infrastructure and security of modern society.

The first contribution was a comprehensive systematization of the literature surrounding Pro-

grammable Logic Controllers (PLCs), resulting in a novel ICS threat taxonomy. This taxonomy

filled gaps in the existing MITRE ATT&CK for ICS Matrix and provided the foundation for more

rigorous threat modeling and countermeasure evaluation in ICS.

The second contribution was the design and evaluation of HoneySat, the first high-interaction

satellite honeypot. HoneySat is both realistic and effective at capturing adversarial interactions

in space systems. It collected valuable TTP data and received positive evaluations from satellite

operators and real-world adversarial interactions over the Internet, supporting the framework’s

realism and utility.

The third contribution was Grand Hack Auto, the first sandbox for V2C threats in CAVs.

In combination with the HYDRA synthetic malware, the sandbox enabled experimentation with

adversarial tactics and evaluated MQTT-based threats on connected vehicles. The results revealed

serious attack potential, including coordinated crashes, and validated the sandbox’s utility for

cybersecurity research.

Together, these contributions advance the state of the art in CTI for CPS by demonstrating novel

ways to gather, classify, and analyze threat intelligence in domains where traditional CTI techniques

are ineffective. They show that with domain-specific frameworks and tools, it is possible to build

a stronger foundation for defending critical CPS infrastructure.

Future work will focus on advancing both the analysis and dissemination phases of the CTI

lifecycle for CPS. While this dissertation has primarily addressed the collection and processing

phases, further CTI life cycles phases remain unexplored and are an open challenge. In the case
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of the analysis phase, one direction is the development of automated analysis tools that take the

processed data and find more specific examples of potential vulnerabilities. These tools could use

machine learning to detect potential threats, infer attacker objectives, and assess operational impact.

In space systems, such tools might analyze threat indicators or anomalies in radio, communications.

For industrial systems, they might analyze CTI with control loop anomalies or actuator misbehavior.

Regarding the dissemination phase of CTI for CPS, sharing CTI with relevant stakeholders in

a secure, timely, and context-aware manner is of paramount importance. This includes creating

tailored CTI formats for different CPS sectors, defining role-based access to sensitive informa-

tion, and leveraging dissemination protocols like TAXII [363]. In the case of satellites, special

considerations include limited bandwidth, intermittent connectivity, and the diverse organizational

ecosystem, e.g., commercial, governmental, and academic missions. Future systems should support

automated, policy-driven dissemination that ensures the right information reaches the right entity

without overwhelming them with irrelevant or overly technical data. Together, improved analysis

and dissemination phases of CTI for CPS would help close the loop in the CTI lifecycle, enabling

CPS operators to respond more quickly and effectively to the latest threats.

109



REFERENCES

[1] W. Bolton, Programmable logic controllers. Newnes, 2015.

[2] D. Formby and R. Beyah, “Temporal execution behavior for host anomaly detection in

programmable logic controllers,” IEEE Transactions on Information Forensics and Security,

vol. 15, pp. 1455–1469, 2019.

[3] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy of attacks on open-source

software supply chains,” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE

Computer Society, 2022, pp. 167–184.

[4] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ics) security–rev.

2,” NIST Special Publication, vol. 800, no. 82, 2015.

[5] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.

Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based attack detection in

cyber-physical systems,” ACM Comput. Surv., vol. 51, no. 4, jul 2018. [Online]. Available:

https://doi.org/10.1145/3203245

[6] K. Stouffer, M. Pease, C. Tang, T. Zimmerman, V. Pillitteri, and S. Lightman, “Guide

to operational technology (ot) security,” National Institute of Standards and Technology:

Gaithersburg, MD, USA, vol. NIST SP 800-82 Rev. 3, Sep. 2023.

[7] E. L. Morales, C. E. Rubio-Medrano, A. Doupé, R. Wang, Y. Shoshitaishvili, T. Bao,
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[270] B. Acharya, M. Saad, A. E. Cinà, L. Schönherr, H. D. Nguyen, A. Oest, P. Vadrevu,

and T. Holz, “Conning the crypto conman: End-to-end analysis of cryptocurrency-based

technical support scams,” in 2024 IEEE Symposium on Security and Privacy (SP).

Los Alamitos, CA, USA: IEEE Computer Society, may 2024. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00156

[271] N. Boschetti, N. G. Gordon, and G. Falco, “Space cybersecurity lessons learned from the

viasat cyberattack,” in ASCEND 2022. Aerospace Research Central, 2022, p. 4380.

[272] R. Bisping, J. Willbold, M. Strohmeier, and V. Lenders, “Wireless signal injection attacks

on VSAT satellite modems,” in 33rd USENIX Security Symposium (USENIX Security 24).

140

http://all.net/dtk/
https://techcrunch.com/2023/11/20/thousands-of-new-honeypots-deployed-across-israel-to-catch-hackers/
https://techcrunch.com/2023/11/20/thousands-of-new-honeypots-deployed-across-israel-to-catch-hackers/
https://www.wired.com/story/hacker-honeypot-go-secure/
https://stingar.security.duke.edu/about-2/
https://doi.org/10.1145/3372297.3423356
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00156


Philadelphia, PA: USENIX Association, Aug. 2024, pp. 6075–6091. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity24/presentation/bisping

[273] G. Kavallieratos and S. Katsikas, “An exploratory analysis of the last frontier: A systematic

literature review of cybersecurity in space,” International Journal of Critical Infrastructure

Protection, p. 100640, 2023.

[274] J. Willbold, M. Schloegel, R. Bisping, M. Strohmeier, T. Holz, and V. Lenders, “Vsaster:

Uncovering inherent security issues in current vsat system practices,” in Proceedings of the

17th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2024, pp.

288–299.

[275] NASA, “What are smallsats and cubesats?” [Online]. Available: https:

//www.nasa.gov/what-are-smallsats-and-cubesats/
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